Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4cycl2v2nb-av | Structured version Visualization version GIF version |
Description: In a (maybe degenerated) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
4cycl2v2nb-av | ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 4293 | . 2 ⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → {{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸) | |
2 | prcom 4211 | . . . . 5 ⊢ {𝐷, 𝐴} = {𝐴, 𝐷} | |
3 | 2 | eleq1i 2679 | . . . 4 ⊢ ({𝐷, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐷} ∈ 𝐸) |
4 | 3 | biimpi 205 | . . 3 ⊢ ({𝐷, 𝐴} ∈ 𝐸 → {𝐴, 𝐷} ∈ 𝐸) |
5 | prcom 4211 | . . . . 5 ⊢ {𝐶, 𝐷} = {𝐷, 𝐶} | |
6 | 5 | eleq1i 2679 | . . . 4 ⊢ ({𝐶, 𝐷} ∈ 𝐸 ↔ {𝐷, 𝐶} ∈ 𝐸) |
7 | 6 | biimpi 205 | . . 3 ⊢ ({𝐶, 𝐷} ∈ 𝐸 → {𝐷, 𝐶} ∈ 𝐸) |
8 | prssi 4293 | . . 3 ⊢ (({𝐴, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐶} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) | |
9 | 4, 7, 8 | syl2anr 494 | . 2 ⊢ (({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) |
10 | 1, 9 | anim12i 588 | 1 ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 ⊆ wss 3540 {cpr 4127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-un 3545 df-in 3547 df-ss 3554 df-sn 4126 df-pr 4128 |
This theorem is referenced by: 4cycl2vnunb-av 41460 |
Copyright terms: Public domain | W3C validator |