Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cyclfrgrrn1 Structured version   Visualization version   GIF version

Theorem 3cyclfrgrrn1 41455
 Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
3cyclfrgrrn1.v 𝑉 = (Vtx‘𝐺)
3cyclfrgrrn1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3cyclfrgrrn1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))
Distinct variable groups:   𝐴,𝑏,𝑐   𝐸,𝑏,𝑐   𝑉,𝑏,𝑐
Allowed substitution hints:   𝐶(𝑏,𝑐)   𝐺(𝑏,𝑐)

Proof of Theorem 3cyclfrgrrn1
Dummy variables 𝑎 𝑥 𝑧 𝑦 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cyclfrgrrn1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 3cyclfrgrrn1.e . . . 4 𝐸 = (Edg‘𝐺)
31, 22pthfrgrrn2 41453 . . 3 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)))
4 necom 2835 . . . . . . . . . . . 12 (𝐴𝐶𝐶𝐴)
5 eldifsn 4260 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑉 ∖ {𝐴}) ↔ (𝐶𝑉𝐶𝐴))
65simplbi2com 655 . . . . . . . . . . . 12 (𝐶𝐴 → (𝐶𝑉𝐶 ∈ (𝑉 ∖ {𝐴})))
74, 6sylbi 206 . . . . . . . . . . 11 (𝐴𝐶 → (𝐶𝑉𝐶 ∈ (𝑉 ∖ {𝐴})))
87com12 32 . . . . . . . . . 10 (𝐶𝑉 → (𝐴𝐶𝐶 ∈ (𝑉 ∖ {𝐴})))
98adantl 481 . . . . . . . . 9 ((𝐴𝑉𝐶𝑉) → (𝐴𝐶𝐶 ∈ (𝑉 ∖ {𝐴})))
109imp 444 . . . . . . . 8 (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → 𝐶 ∈ (𝑉 ∖ {𝐴}))
11 sneq 4135 . . . . . . . . . . . 12 (𝑎 = 𝐴 → {𝑎} = {𝐴})
1211difeq2d 3690 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝐴}))
13 preq1 4212 . . . . . . . . . . . . . . 15 (𝑎 = 𝐴 → {𝑎, 𝑥} = {𝐴, 𝑥})
1413eleq1d 2672 . . . . . . . . . . . . . 14 (𝑎 = 𝐴 → ({𝑎, 𝑥} ∈ 𝐸 ↔ {𝐴, 𝑥} ∈ 𝐸))
1514anbi1d 737 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸)))
16 neeq1 2844 . . . . . . . . . . . . . 14 (𝑎 = 𝐴 → (𝑎𝑥𝐴𝑥))
1716anbi1d 737 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → ((𝑎𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝑧)))
1815, 17anbi12d 743 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ((({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) ↔ (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝑧))))
1918rexbidv 3034 . . . . . . . . . . 11 (𝑎 = 𝐴 → (∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) ↔ ∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝑧))))
2012, 19raleqbidv 3129 . . . . . . . . . 10 (𝑎 = 𝐴 → (∀𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) ↔ ∀𝑧 ∈ (𝑉 ∖ {𝐴})∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝑧))))
2120rspcv 3278 . . . . . . . . 9 (𝐴𝑉 → (∀𝑎𝑉𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) → ∀𝑧 ∈ (𝑉 ∖ {𝐴})∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝑧))))
2221ad2antrr 758 . . . . . . . 8 (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (∀𝑎𝑉𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) → ∀𝑧 ∈ (𝑉 ∖ {𝐴})∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝑧))))
23 preq2 4213 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → {𝑥, 𝑧} = {𝑥, 𝐶})
2423eleq1d 2672 . . . . . . . . . . . 12 (𝑧 = 𝐶 → ({𝑥, 𝑧} ∈ 𝐸 ↔ {𝑥, 𝐶} ∈ 𝐸))
2524anbi2d 736 . . . . . . . . . . 11 (𝑧 = 𝐶 → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸)))
26 neeq2 2845 . . . . . . . . . . . 12 (𝑧 = 𝐶 → (𝑥𝑧𝑥𝐶))
2726anbi2d 736 . . . . . . . . . . 11 (𝑧 = 𝐶 → ((𝐴𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝐶)))
2825, 27anbi12d 743 . . . . . . . . . 10 (𝑧 = 𝐶 → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝑧)) ↔ (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶))))
2928rexbidv 3034 . . . . . . . . 9 (𝑧 = 𝐶 → (∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝑧)) ↔ ∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶))))
3029rspcv 3278 . . . . . . . 8 (𝐶 ∈ (𝑉 ∖ {𝐴}) → (∀𝑧 ∈ (𝑉 ∖ {𝐴})∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝑧)) → ∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶))))
3110, 22, 30sylsyld 59 . . . . . . 7 (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (∀𝑎𝑉𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) → ∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶))))
321, 22pthfrgrrn 41452 . . . . . . . . . 10 (𝐺 ∈ FriendGraph → ∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸))
33 necom 2835 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑥𝑥𝐴)
34 eldifsn 4260 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝑉 ∖ {𝐴}) ↔ (𝑥𝑉𝑥𝐴))
3534simplbi2com 655 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐴 → (𝑥𝑉𝑥 ∈ (𝑉 ∖ {𝐴})))
3633, 35sylbi 206 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝑥 → (𝑥𝑉𝑥 ∈ (𝑉 ∖ {𝐴})))
3736adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑥𝐴𝑉) → (𝑥𝑉𝑥 ∈ (𝑉 ∖ {𝐴})))
3837imp 444 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑥𝐴𝑉) ∧ 𝑥𝑉) → 𝑥 ∈ (𝑉 ∖ {𝐴}))
39 sneq 4135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = 𝐴 → {𝑢} = {𝐴})
4039difeq2d 3690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝐴 → (𝑉 ∖ {𝑢}) = (𝑉 ∖ {𝐴}))
41 preq1 4212 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝐴 → {𝑢, 𝑦} = {𝐴, 𝑦})
4241eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 = 𝐴 → ({𝑢, 𝑦} ∈ 𝐸 ↔ {𝐴, 𝑦} ∈ 𝐸))
4342anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = 𝐴 → (({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸)))
4443rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝐴 → (∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸)))
4540, 44raleqbidv 3129 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝐴 → (∀𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸)))
4645rspcv 3278 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝑉 → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸)))
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑥𝐴𝑉) → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸)))
4847adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑥𝐴𝑉) ∧ 𝑥𝑉) → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸)))
49 preq2 4213 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑥 → {𝑦, 𝑣} = {𝑦, 𝑥})
5049eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑥 → ({𝑦, 𝑣} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸))
5150anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑥 → (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸)))
5251rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑥 → (∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) ↔ ∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸)))
5352rspcv 3278 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝑉 ∖ {𝐴}) → (∀𝑣 ∈ (𝑉 ∖ {𝐴})∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸)))
5438, 48, 53sylsyld 59 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑥𝐴𝑉) ∧ 𝑥𝑉) → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸)))
55 prcom 4211 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝐴, 𝑦} = {𝑦, 𝐴}
5655eleq1i 2679 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({𝐴, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝐴} ∈ 𝐸)
57 prcom 4211 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑦, 𝑥} = {𝑥, 𝑦}
5857eleq1i 2679 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({𝑦, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)
5956, 58anbi12ci 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸))
60 preq2 4213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 = 𝑥 → {𝐴, 𝑏} = {𝐴, 𝑥})
6160eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑥 → ({𝐴, 𝑏} ∈ 𝐸 ↔ {𝐴, 𝑥} ∈ 𝐸))
62 preq1 4212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 = 𝑥 → {𝑏, 𝑐} = {𝑥, 𝑐})
6362eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑥 → ({𝑏, 𝑐} ∈ 𝐸 ↔ {𝑥, 𝑐} ∈ 𝐸))
64 biidd 251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑥 → ({𝑐, 𝐴} ∈ 𝐸 ↔ {𝑐, 𝐴} ∈ 𝐸))
6561, 63, 643anbi123d 1391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 = 𝑥 → (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))
66 biidd 251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑦 → ({𝐴, 𝑥} ∈ 𝐸 ↔ {𝐴, 𝑥} ∈ 𝐸))
67 preq2 4213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑦 → {𝑥, 𝑐} = {𝑥, 𝑦})
6867eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑦 → ({𝑥, 𝑐} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
69 preq1 4212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑦 → {𝑐, 𝐴} = {𝑦, 𝐴})
7069eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑦 → ({𝑐, 𝐴} ∈ 𝐸 ↔ {𝑦, 𝐴} ∈ 𝐸))
7166, 68, 703anbi123d 1391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑦 → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸)))
7265, 71rspc2ev 3295 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥𝑉𝑦𝑉 ∧ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸)) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))
73723expa 1257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝑉𝑦𝑉) ∧ ({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸)) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))
7473expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))
75743expib 1260 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({𝐴, 𝑥} ∈ 𝐸 → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐴} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
7659, 75syl5bi 231 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝐴, 𝑥} ∈ 𝐸 → (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
7776adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
7877com13 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑉𝑦𝑉) → (({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
7978rexlimdva 3013 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑉 → (∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
8079com13 86 . . . . . . . . . . . . . . . . . . . 20 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (∃𝑦𝑉 ({𝐴, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → (𝑥𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
8154, 80syl9 75 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑥𝐴𝑉) ∧ 𝑥𝑉) → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
8281exp31 628 . . . . . . . . . . . . . . . . . 18 (𝐴𝑥 → (𝐴𝑉 → (𝑥𝑉 → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))))
8382com24 93 . . . . . . . . . . . . . . . . 17 (𝐴𝑥 → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (𝑥𝑉 → (𝐴𝑉 → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))))
8483adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴𝑥𝑥𝐶) → (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) → (𝑥𝑉 → (𝐴𝑉 → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))))
8584impcom 445 . . . . . . . . . . . . . . 15 ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → (𝑥𝑉 → (𝐴𝑉 → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → (𝑥𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))))
8685com15 99 . . . . . . . . . . . . . 14 (𝑥𝑉 → (𝑥𝑉 → (𝐴𝑉 → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))))
8786pm2.43i 50 . . . . . . . . . . . . 13 (𝑥𝑉 → (𝐴𝑉 → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
8887com12 32 . . . . . . . . . . . 12 (𝐴𝑉 → (𝑥𝑉 → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
8988ad2antrr 758 . . . . . . . . . . 11 (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (𝑥𝑉 → (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
9089com4t 91 . . . . . . . . . 10 (∀𝑢𝑉𝑣 ∈ (𝑉 ∖ {𝑢})∃𝑦𝑉 ({𝑢, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑣} ∈ 𝐸) → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (𝑥𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
9132, 90syl 17 . . . . . . . . 9 (𝐺 ∈ FriendGraph → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (𝑥𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
9291com14 94 . . . . . . . 8 (𝑥𝑉 → ((({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
9392rexlimiv 3009 . . . . . . 7 (∃𝑥𝑉 (({𝐴, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝐶} ∈ 𝐸) ∧ (𝐴𝑥𝑥𝐶)) → (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
9431, 93syl6 34 . . . . . 6 (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (∀𝑎𝑉𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) → (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
9594pm2.43a 52 . . . . 5 (((𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → (∀𝑎𝑉𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
9695ex 449 . . . 4 ((𝐴𝑉𝐶𝑉) → (𝐴𝐶 → (∀𝑎𝑉𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
9796com4t 91 . . 3 (∀𝑎𝑉𝑧 ∈ (𝑉 ∖ {𝑎})∃𝑥𝑉 (({𝑎, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ∧ (𝑎𝑥𝑥𝑧)) → (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉) → (𝐴𝐶 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)))))
983, 97mpcom 37 . 2 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉) → (𝐴𝐶 → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))))
99983imp 1249 1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ∖ cdif 3537  {csn 4125  {cpr 4127  ‘cfv 5804  Vtxcvtx 25673  Edgcedga 25792   FriendGraph cfrgr 41428 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-umgr 25750  df-edga 25793  df-usgr 40381  df-frgr 41429 This theorem is referenced by:  3cyclfrgrrn  41456
 Copyright terms: Public domain W3C validator