Step | Hyp | Ref
| Expression |
1 | | frgrwopreg.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | frgrwopreg.d |
. . . . . 6
⊢ 𝐷 = (VtxDeg‘𝐺) |
3 | | frgrwopreg.a |
. . . . . 6
⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
4 | | frgrwopreg.b |
. . . . . 6
⊢ 𝐵 = (𝑉 ∖ 𝐴) |
5 | 1, 2, 3, 4 | frgrwopreglem1 41481 |
. . . . 5
⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
6 | 5 | simpri 477 |
. . . 4
⊢ 𝐵 ∈ V |
7 | | hash1snb 13068 |
. . . 4
⊢ (𝐵 ∈ V → ((#‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})) |
8 | 6, 7 | ax-mp 5 |
. . 3
⊢
((#‘𝐵) = 1
↔ ∃𝑣 𝐵 = {𝑣}) |
9 | | exsnrex 4168 |
. . . . 5
⊢
(∃𝑣 𝐵 = {𝑣} ↔ ∃𝑣 ∈ 𝐵 𝐵 = {𝑣}) |
10 | | difss 3699 |
. . . . . . . 8
⊢ (𝑉 ∖ 𝐴) ⊆ 𝑉 |
11 | 4, 10 | eqsstri 3598 |
. . . . . . 7
⊢ 𝐵 ⊆ 𝑉 |
12 | | ssrexv 3630 |
. . . . . . 7
⊢ (𝐵 ⊆ 𝑉 → (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣})) |
13 | 11, 12 | ax-mp 5 |
. . . . . 6
⊢
(∃𝑣 ∈
𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣}) |
14 | | frgrwopreg.e |
. . . . . . . . 9
⊢ 𝐸 = (Edg‘𝐺) |
15 | 1, 2, 3, 4, 14 | frgrwopreglem4 41484 |
. . . . . . . 8
⊢ (𝐺 ∈ FriendGraph →
∀𝑤 ∈ 𝐴 ∀𝑢 ∈ 𝐵 {𝑤, 𝑢} ∈ 𝐸) |
16 | | ralcom 3079 |
. . . . . . . . 9
⊢
(∀𝑤 ∈
𝐴 ∀𝑢 ∈ 𝐵 {𝑤, 𝑢} ∈ 𝐸 ↔ ∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ 𝐸) |
17 | | vsnid 4156 |
. . . . . . . . . . . 12
⊢ 𝑣 ∈ {𝑣} |
18 | | eleq2 2677 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑣} → (𝑣 ∈ 𝐵 ↔ 𝑣 ∈ {𝑣})) |
19 | 17, 18 | mpbiri 247 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑣} → 𝑣 ∈ 𝐵) |
20 | | preq2 4213 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑣 → {𝑤, 𝑢} = {𝑤, 𝑣}) |
21 | 20 | eleq1d 2672 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑣 → ({𝑤, 𝑢} ∈ 𝐸 ↔ {𝑤, 𝑣} ∈ 𝐸)) |
22 | 21 | ralbidv 2969 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸)) |
23 | 22 | rspcv 3278 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ 𝐵 → (∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸)) |
24 | 19, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝐵 = {𝑣} → (∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸)) |
25 | 4 | eqeq1i 2615 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑣} ↔ (𝑉 ∖ 𝐴) = {𝑣}) |
26 | | ssrab2 3650 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} ⊆ 𝑉 |
27 | 3, 26 | eqsstri 3598 |
. . . . . . . . . . . . . 14
⊢ 𝐴 ⊆ 𝑉 |
28 | | dfss4 3820 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝑉 ↔ (𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴) |
29 | | eqcom 2617 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴 ↔ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) |
30 | 28, 29 | bitri 263 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑉 ↔ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) |
31 | 27, 30 | mpbi 219 |
. . . . . . . . . . . . 13
⊢ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴)) |
32 | | difeq2 3684 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∖ 𝐴) = {𝑣} → (𝑉 ∖ (𝑉 ∖ 𝐴)) = (𝑉 ∖ {𝑣})) |
33 | 31, 32 | syl5eq 2656 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∖ 𝐴) = {𝑣} → 𝐴 = (𝑉 ∖ {𝑣})) |
34 | 25, 33 | sylbi 206 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑣} → 𝐴 = (𝑉 ∖ {𝑣})) |
35 | | prcom 4211 |
. . . . . . . . . . . . 13
⊢ {𝑤, 𝑣} = {𝑣, 𝑤} |
36 | 35 | eleq1i 2679 |
. . . . . . . . . . . 12
⊢ ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑣, 𝑤} ∈ 𝐸) |
37 | 36 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑣} → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑣, 𝑤} ∈ 𝐸)) |
38 | 34, 37 | raleqbidv 3129 |
. . . . . . . . . 10
⊢ (𝐵 = {𝑣} → (∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
39 | 24, 38 | sylibd 228 |
. . . . . . . . 9
⊢ (𝐵 = {𝑣} → (∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
40 | 16, 39 | syl5bi 231 |
. . . . . . . 8
⊢ (𝐵 = {𝑣} → (∀𝑤 ∈ 𝐴 ∀𝑢 ∈ 𝐵 {𝑤, 𝑢} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
41 | 15, 40 | syl5com 31 |
. . . . . . 7
⊢ (𝐺 ∈ FriendGraph →
(𝐵 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
42 | 41 | reximdv 2999 |
. . . . . 6
⊢ (𝐺 ∈ FriendGraph →
(∃𝑣 ∈ 𝑉 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
43 | 13, 42 | syl5com 31 |
. . . . 5
⊢
(∃𝑣 ∈
𝐵 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
44 | 9, 43 | sylbi 206 |
. . . 4
⊢
(∃𝑣 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
45 | 44 | com12 32 |
. . 3
⊢ (𝐺 ∈ FriendGraph →
(∃𝑣 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
46 | 8, 45 | syl5bi 231 |
. 2
⊢ (𝐺 ∈ FriendGraph →
((#‘𝐵) = 1 →
∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
47 | 46 | imp 444 |
1
⊢ ((𝐺 ∈ FriendGraph ∧
(#‘𝐵) = 1) →
∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |