Step | Hyp | Ref
| Expression |
1 | | frgrwopreg.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | frgrwopreg.d |
. . . 4
⊢ 𝐷 = (VtxDeg‘𝐺) |
3 | | frgrwopreg.a |
. . . 4
⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
4 | | frgrwopreg.b |
. . . 4
⊢ 𝐵 = (𝑉 ∖ 𝐴) |
5 | 1, 2, 3, 4 | frgrwopreglem1 41481 |
. . 3
⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
6 | | hashgt12el 13070 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ 1 <
(#‘𝐴)) →
∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 𝑎 ≠ 𝑥) |
7 | 6 | ad4ant14 1285 |
. . . . . 6
⊢ ((((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 1 <
(#‘𝐵)) ∧ 1 <
(#‘𝐴)) →
∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 𝑎 ≠ 𝑥) |
8 | | hashgt12el 13070 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 1 <
(#‘𝐵)) →
∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑏 ≠ 𝑦) |
9 | 8 | ad4ant23 1289 |
. . . . . 6
⊢ ((((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 1 <
(#‘𝐵)) ∧ 1 <
(#‘𝐴)) →
∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑏 ≠ 𝑦) |
10 | | reeanv 3086 |
. . . . . . 7
⊢
(∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃𝑦 ∈ 𝐵 𝑏 ≠ 𝑦) ↔ (∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑏 ≠ 𝑦)) |
11 | | reeanv 3086 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) ↔ (∃𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃𝑦 ∈ 𝐵 𝑏 ≠ 𝑦)) |
12 | 11 | 2rexbii 3024 |
. . . . . . . 8
⊢
(∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃𝑦 ∈ 𝐵 𝑏 ≠ 𝑦)) |
13 | | rexcom 3080 |
. . . . . . . . . . 11
⊢
(∃𝑏 ∈
𝐵 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦)) |
14 | | simpr 476 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦)) → (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦)) |
15 | 14 | ancomd 466 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦)) → (𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥)) |
16 | | frgrwopreg.e |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝐸 = (Edg‘𝐺) |
17 | 1, 2, 3, 4, 16 | frgrwopreglem4 41484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 ∈ FriendGraph →
∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 {𝑎, 𝑏} ∈ 𝐸) |
18 | | rsp2 2920 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐵 {𝑎, 𝑏} ∈ 𝐸 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → {𝑎, 𝑏} ∈ 𝐸)) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ FriendGraph →
((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → {𝑎, 𝑏} ∈ 𝐸)) |
20 | 19 | expdimp 452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) → (𝑏 ∈ 𝐵 → {𝑎, 𝑏} ∈ 𝐸)) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑏 ∈ 𝐵 → {𝑎, 𝑏} ∈ 𝐸)) |
22 | 21 | imp 444 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → {𝑎, 𝑏} ∈ 𝐸) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → {𝑎, 𝑏} ∈ 𝐸) |
24 | 1, 2, 3, 4, 16 | frgrwopreglem4 41484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 ∈ FriendGraph →
∀𝑧 ∈ 𝐴 ∀𝑐 ∈ 𝐵 {𝑧, 𝑐} ∈ 𝐸) |
25 | | preq1 4212 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑥 → {𝑧, 𝑐} = {𝑥, 𝑐}) |
26 | 25 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = 𝑥 → ({𝑧, 𝑐} ∈ 𝐸 ↔ {𝑥, 𝑐} ∈ 𝐸)) |
27 | | preq2 4213 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑐 = 𝑏 → {𝑥, 𝑐} = {𝑥, 𝑏}) |
28 | 27 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = 𝑏 → ({𝑥, 𝑐} ∈ 𝐸 ↔ {𝑥, 𝑏} ∈ 𝐸)) |
29 | 26, 28 | cbvral2v 3155 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑧 ∈
𝐴 ∀𝑐 ∈ 𝐵 {𝑧, 𝑐} ∈ 𝐸 ↔ ∀𝑥 ∈ 𝐴 ∀𝑏 ∈ 𝐵 {𝑥, 𝑏} ∈ 𝐸) |
30 | | rsp2 2920 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑥 ∈
𝐴 ∀𝑏 ∈ 𝐵 {𝑥, 𝑏} ∈ 𝐸 → ((𝑥 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → {𝑥, 𝑏} ∈ 𝐸)) |
31 | 29, 30 | sylbi 206 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑧 ∈
𝐴 ∀𝑐 ∈ 𝐵 {𝑧, 𝑐} ∈ 𝐸 → ((𝑥 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → {𝑥, 𝑏} ∈ 𝐸)) |
32 | 24, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ FriendGraph →
((𝑥 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → {𝑥, 𝑏} ∈ 𝐸)) |
33 | 32 | expd 451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ FriendGraph →
(𝑥 ∈ 𝐴 → (𝑏 ∈ 𝐵 → {𝑥, 𝑏} ∈ 𝐸))) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) → (𝑥 ∈ 𝐴 → (𝑏 ∈ 𝐵 → {𝑥, 𝑏} ∈ 𝐸))) |
35 | 34 | imp31 447 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → {𝑥, 𝑏} ∈ 𝐸) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑏} ∈ 𝐸) |
37 | 23, 36 | jca 553 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸)) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸)) |
39 | 1, 2, 3, 4, 16 | frgrwopreglem4 41484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ FriendGraph →
∀𝑎 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {𝑎, 𝑦} ∈ 𝐸) |
40 | | rsp2 2920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑎 ∈
𝐴 ∀𝑦 ∈ 𝐵 {𝑎, 𝑦} ∈ 𝐸 → ((𝑎 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑎, 𝑦} ∈ 𝐸)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ FriendGraph →
((𝑎 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑎, 𝑦} ∈ 𝐸)) |
42 | 41 | expdimp 452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) → (𝑦 ∈ 𝐵 → {𝑎, 𝑦} ∈ 𝐸)) |
43 | 42 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑦 ∈ 𝐵 → {𝑎, 𝑦} ∈ 𝐸)) |
44 | 43 | imp 444 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → {𝑎, 𝑦} ∈ 𝐸) |
45 | | preq2 4213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑐 = 𝑦 → {𝑥, 𝑐} = {𝑥, 𝑦}) |
46 | 45 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑐 = 𝑦 → ({𝑥, 𝑐} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)) |
47 | 26, 46 | cbvral2v 3155 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑧 ∈
𝐴 ∀𝑐 ∈ 𝐵 {𝑧, 𝑐} ∈ 𝐸 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ 𝐸) |
48 | | rsp2 2920 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ 𝐸 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ 𝐸)) |
49 | 47, 48 | sylbi 206 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑧 ∈
𝐴 ∀𝑐 ∈ 𝐵 {𝑧, 𝑐} ∈ 𝐸 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ 𝐸)) |
50 | 24, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 ∈ FriendGraph →
((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ 𝐸)) |
51 | 50 | expd 451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ FriendGraph →
(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → {𝑥, 𝑦} ∈ 𝐸))) |
52 | 51 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → {𝑥, 𝑦} ∈ 𝐸))) |
53 | 52 | imp 444 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → {𝑥, 𝑦} ∈ 𝐸)) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑦 ∈ 𝐵 → {𝑥, 𝑦} ∈ 𝐸)) |
55 | 54 | imp 444 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ 𝐸) |
56 | 44, 55 | jca 553 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦)) → ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)) |
58 | 15, 38, 57 | 3jca 1235 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦)) → ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))) |
59 | 58 | ex 449 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) → ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
60 | 59 | reximdva 3000 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) → ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
61 | 60 | reximdva 3000 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) → ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
62 | 61 | reximdva 3000 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) → ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
63 | 13, 62 | syl5bi 231 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) → ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
64 | 63 | reximdva 3000 |
. . . . . . . . 9
⊢ (𝐺 ∈ FriendGraph →
(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) → ∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
65 | 64 | com12 32 |
. . . . . . . 8
⊢
(∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) → (𝐺 ∈ FriendGraph → ∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
66 | 12, 65 | sylbir 224 |
. . . . . . 7
⊢
(∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃𝑦 ∈ 𝐵 𝑏 ≠ 𝑦) → (𝐺 ∈ FriendGraph → ∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
67 | 10, 66 | sylbir 224 |
. . . . . 6
⊢
((∃𝑎 ∈
𝐴 ∃𝑥 ∈ 𝐴 𝑎 ≠ 𝑥 ∧ ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝑏 ≠ 𝑦) → (𝐺 ∈ FriendGraph → ∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
68 | 7, 9, 67 | syl2anc 691 |
. . . . 5
⊢ ((((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 1 <
(#‘𝐵)) ∧ 1 <
(#‘𝐴)) → (𝐺 ∈ FriendGraph →
∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
69 | 68 | exp31 628 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1 <
(#‘𝐵) → (1 <
(#‘𝐴) → (𝐺 ∈ FriendGraph →
∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))))) |
70 | 69 | com24 93 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐺 ∈ FriendGraph → (1
< (#‘𝐴) → (1
< (#‘𝐵) →
∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))))) |
71 | 5, 70 | ax-mp 5 |
. 2
⊢ (𝐺 ∈ FriendGraph → (1
< (#‘𝐴) → (1
< (#‘𝐵) →
∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))))) |
72 | 71 | 3imp 1249 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ 1 <
(#‘𝐴) ∧ 1 <
(#‘𝐵)) →
∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑏 ≠ 𝑦 ∧ 𝑎 ≠ 𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))) |