Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  konigsberglem4 Structured version   Visualization version   GIF version

Theorem konigsberglem4 41425
 Description: Lemma 4 for konigsberg-av 41427: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg-av.v 𝑉 = (0...3)
konigsberg-av.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg-av.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem4 {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
Distinct variable groups:   𝑥,𝑉   𝑥,𝐺
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem konigsberglem4
StepHypRef Expression
1 3nn0 11187 . . . . . 6 3 ∈ ℕ0
2 0elfz 12305 . . . . . 6 (3 ∈ ℕ0 → 0 ∈ (0...3))
31, 2ax-mp 5 . . . . 5 0 ∈ (0...3)
4 konigsberg-av.v . . . . 5 𝑉 = (0...3)
53, 4eleqtrri 2687 . . . 4 0 ∈ 𝑉
6 n2dvds3 14945 . . . . 5 ¬ 2 ∥ 3
7 konigsberg-av.e . . . . . . 7 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
8 konigsberg-av.g . . . . . . 7 𝐺 = ⟨𝑉, 𝐸
94, 7, 8konigsberglem1 41422 . . . . . 6 ((VtxDeg‘𝐺)‘0) = 3
109breq2i 4591 . . . . 5 (2 ∥ ((VtxDeg‘𝐺)‘0) ↔ 2 ∥ 3)
116, 10mtbir 312 . . . 4 ¬ 2 ∥ ((VtxDeg‘𝐺)‘0)
12 fveq2 6103 . . . . . . 7 (𝑥 = 0 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘0))
1312breq2d 4595 . . . . . 6 (𝑥 = 0 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘0)))
1413notbid 307 . . . . 5 (𝑥 = 0 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0)))
1514elrab 3331 . . . 4 (0 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (0 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0)))
165, 11, 15mpbir2an 957 . . 3 0 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
17 1nn0 11185 . . . . . 6 1 ∈ ℕ0
18 1le3 11121 . . . . . 6 1 ≤ 3
19 elfz2nn0 12300 . . . . . 6 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
2017, 1, 18, 19mpbir3an 1237 . . . . 5 1 ∈ (0...3)
2120, 4eleqtrri 2687 . . . 4 1 ∈ 𝑉
224, 7, 8konigsberglem2 41423 . . . . . 6 ((VtxDeg‘𝐺)‘1) = 3
2322breq2i 4591 . . . . 5 (2 ∥ ((VtxDeg‘𝐺)‘1) ↔ 2 ∥ 3)
246, 23mtbir 312 . . . 4 ¬ 2 ∥ ((VtxDeg‘𝐺)‘1)
25 fveq2 6103 . . . . . . 7 (𝑥 = 1 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘1))
2625breq2d 4595 . . . . . 6 (𝑥 = 1 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘1)))
2726notbid 307 . . . . 5 (𝑥 = 1 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1)))
2827elrab 3331 . . . 4 (1 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (1 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1)))
2921, 24, 28mpbir2an 957 . . 3 1 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
30 3re 10971 . . . . . . 7 3 ∈ ℝ
3130leidi 10441 . . . . . 6 3 ≤ 3
32 elfz2nn0 12300 . . . . . 6 (3 ∈ (0...3) ↔ (3 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 3 ≤ 3))
331, 1, 31, 32mpbir3an 1237 . . . . 5 3 ∈ (0...3)
3433, 4eleqtrri 2687 . . . 4 3 ∈ 𝑉
354, 7, 8konigsberglem3 41424 . . . . . 6 ((VtxDeg‘𝐺)‘3) = 3
3635breq2i 4591 . . . . 5 (2 ∥ ((VtxDeg‘𝐺)‘3) ↔ 2 ∥ 3)
376, 36mtbir 312 . . . 4 ¬ 2 ∥ ((VtxDeg‘𝐺)‘3)
38 fveq2 6103 . . . . . . 7 (𝑥 = 3 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘3))
3938breq2d 4595 . . . . . 6 (𝑥 = 3 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘3)))
4039notbid 307 . . . . 5 (𝑥 = 3 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3)))
4140elrab 3331 . . . 4 (3 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (3 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3)))
4234, 37, 41mpbir2an 957 . . 3 3 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
4316, 29, 423pm3.2i 1232 . 2 (0 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
44 c0ex 9913 . . 3 0 ∈ V
45 1ex 9914 . . 3 1 ∈ V
46 3ex 10973 . . 3 3 ∈ V
4744, 45, 46tpss 4308 . 2 ((0 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
4843, 47mpbi 219 1 {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   ⊆ wss 3540  {cpr 4127  {ctp 4129  ⟨cop 4131   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   ≤ cle 9954  2c2 10947  3c3 10948  ℕ0cn0 11169  ...cfz 12197  ⟨“cs7 13442   ∥ cdvds 14821  VtxDegcvtxdg 40681 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-s4 13446  df-s5 13447  df-s6 13448  df-s7 13449  df-dvds 14822  df-vtx 25675  df-iedg 25676  df-vtxdg 40682 This theorem is referenced by:  konigsberglem5  41426
 Copyright terms: Public domain W3C validator