Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpss Structured version   Visualization version   GIF version

Theorem tpss 4308
 Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1 𝐴 ∈ V
tpss.2 𝐵 ∈ V
tpss.3 𝐶 ∈ V
Assertion
Ref Expression
tpss ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpss
StepHypRef Expression
1 unss 3749 . 2 (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
2 df-3an 1033 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷))
3 tpss.1 . . . . 5 𝐴 ∈ V
4 tpss.2 . . . . 5 𝐵 ∈ V
53, 4prss 4291 . . . 4 ((𝐴𝐷𝐵𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷)
6 tpss.3 . . . . 5 𝐶 ∈ V
76snss 4259 . . . 4 (𝐶𝐷 ↔ {𝐶} ⊆ 𝐷)
85, 7anbi12i 729 . . 3 (((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
92, 8bitri 263 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
10 df-tp 4130 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1110sseq1i 3592 . 2 ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
121, 9, 113bitr4i 291 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977  Vcvv 3173   ∪ cun 3538   ⊆ wss 3540  {csn 4125  {cpr 4127  {ctp 4129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-in 3547  df-ss 3554  df-sn 4126  df-pr 4128  df-tp 4130 This theorem is referenced by:  1cubr  24369  constr3trllem1  26178  rabren3dioph  36397  fourierdlem102  39101  fourierdlem114  39113  nnsum4primesodd  40212  nnsum4primesoddALTV  40213  konigsberglem4  41425
 Copyright terms: Public domain W3C validator