Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk6 Structured version   Visualization version   GIF version

Theorem numclwwlk6 26640
 Description: For a prime divisor p of k-1, the total number of closed walks of length p in an undirected simple graph with m vertices mod p is equal to the number of vertices mod p. (Contributed by Alexander van der Vekens, 7-Oct-2018.)
Hypotheses
Ref Expression
numclwwlk.c 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
numclwwlk6 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝐶𝑃)) mod 𝑃) = ((#‘𝑉) mod 𝑃))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑉   𝑤,𝐶,𝑛,𝑣   𝑣,𝑉   𝑤,𝐸   𝑤,𝑉   𝑤,𝐹   𝑤,𝑃   𝑣,𝐸   𝑣,𝐾,𝑤   𝑃,𝑛,𝑣
Allowed substitution hints:   𝐹(𝑣,𝑛)   𝐾(𝑛)

Proof of Theorem numclwwlk6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rusisusgra 26458 . . . . . 6 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 USGrph 𝐸)
213ad2ant1 1075 . . . . 5 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) → 𝑉 USGrph 𝐸)
32adantr 480 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 USGrph 𝐸)
4 simp3 1056 . . . . 5 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) → 𝑉 ∈ Fin)
54adantr 480 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
6 prmnn 15226 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
76nnnn0d 11228 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
87ad2antrl 760 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ0)
9 numclwwlk.c . . . . 5 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
10 numclwwlk.f . . . . 5 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ (𝑤‘0) = 𝑣})
119, 10numclwwlk4 26637 . . . 4 ((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑃 ∈ ℕ0) → (#‘(𝐶𝑃)) = Σ𝑥𝑉 (#‘(𝑥𝐹𝑃)))
123, 5, 8, 11syl3anc 1318 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝐶𝑃)) = Σ𝑥𝑉 (#‘(𝑥𝐹𝑃)))
1312oveq1d 6564 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝐶𝑃)) mod 𝑃) = (Σ𝑥𝑉 (#‘(𝑥𝐹𝑃)) mod 𝑃))
146ad2antrl 760 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
15 usgrav 25867 . . . . . . . . . . . . . . 15 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
1615simprd 478 . . . . . . . . . . . . . 14 (𝑉 USGrph 𝐸𝐸 ∈ V)
171, 16syl 17 . . . . . . . . . . . . 13 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝐸 ∈ V)
1817anim1i 590 . . . . . . . . . . . 12 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) → (𝐸 ∈ V ∧ 𝑉 ∈ Fin))
1918ancomd 466 . . . . . . . . . . 11 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 𝐸 ∈ V))
20193adant2 1073 . . . . . . . . . 10 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 𝐸 ∈ V))
2120adantr 480 . . . . . . . . 9 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝐸 ∈ V))
2221adantr 480 . . . . . . . 8 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑉 ∈ Fin ∧ 𝐸 ∈ V))
238anim1i 590 . . . . . . . . 9 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑃 ∈ ℕ0𝑥𝑉))
2423ancomd 466 . . . . . . . 8 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉𝑃 ∈ ℕ0))
259, 10numclwwlkffin 26609 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐸 ∈ V) ∧ (𝑥𝑉𝑃 ∈ ℕ0)) → (𝑥𝐹𝑃) ∈ Fin)
2622, 24, 25syl2anc 691 . . . . . . 7 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝐹𝑃) ∈ Fin)
27 hashcl 13009 . . . . . . 7 ((𝑥𝐹𝑃) ∈ Fin → (#‘(𝑥𝐹𝑃)) ∈ ℕ0)
2826, 27syl 17 . . . . . 6 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (#‘(𝑥𝐹𝑃)) ∈ ℕ0)
2928nn0zd 11356 . . . . 5 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (#‘(𝑥𝐹𝑃)) ∈ ℤ)
3029ralrimiva 2949 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ∀𝑥𝑉 (#‘(𝑥𝐹𝑃)) ∈ ℤ)
3114, 5, 30modfsummod 14367 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (#‘(𝑥𝐹𝑃)) mod 𝑃) = (Σ𝑥𝑉 ((#‘(𝑥𝐹𝑃)) mod 𝑃) mod 𝑃))
32 simpll 786 . . . . . 6 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin))
33 simpr 476 . . . . . 6 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑥𝑉)
34 simplrl 796 . . . . . 6 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑃 ∈ ℙ)
35 simplrr 797 . . . . . 6 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑃 ∥ (𝐾 − 1))
369, 10numclwwlk5 26639 . . . . . 6 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑥𝐹𝑃)) mod 𝑃) = 1)
3732, 33, 34, 35, 36syl13anc 1320 . . . . 5 ((((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((#‘(𝑥𝐹𝑃)) mod 𝑃) = 1)
3837sumeq2dv 14281 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 ((#‘(𝑥𝐹𝑃)) mod 𝑃) = Σ𝑥𝑉 1)
3938oveq1d 6564 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 ((#‘(𝑥𝐹𝑃)) mod 𝑃) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
4031, 39eqtrd 2644 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (#‘(𝑥𝐹𝑃)) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
41 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
424, 41jctir 559 . . . . . 6 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ∈ ℂ))
4342adantr 480 . . . . 5 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 1 ∈ ℂ))
44 fsumconst 14364 . . . . 5 ((𝑉 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝑉 1 = ((#‘𝑉) · 1))
4543, 44syl 17 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = ((#‘𝑉) · 1))
46 hashcl 13009 . . . . . . . 8 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
4746nn0red 11229 . . . . . . 7 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℝ)
48473ad2ant3 1077 . . . . . 6 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) → (#‘𝑉) ∈ ℝ)
4948adantr 480 . . . . 5 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘𝑉) ∈ ℝ)
50 ax-1rid 9885 . . . . 5 ((#‘𝑉) ∈ ℝ → ((#‘𝑉) · 1) = (#‘𝑉))
5149, 50syl 17 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘𝑉) · 1) = (#‘𝑉))
5245, 51eqtrd 2644 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = (#‘𝑉))
5352oveq1d 6564 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 1 mod 𝑃) = ((#‘𝑉) mod 𝑃))
5413, 40, 533eqtrd 2648 1 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝐶𝑃)) mod 𝑃) = ((#‘𝑉) mod 𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173  ⟨cop 4131   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254   mod cmo 12530  #chash 12979  Σcsu 14264   ∥ cdvds 14821  ℙcprime 15223   USGrph cusg 25859   ClWWalksN cclwwlkn 26277   RegUSGrph crusgra 26450   FriendGrph cfrgra 26515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-s2 13444  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-usgra 25862  df-nbgra 25949  df-wlk 26036  df-wwlk 26207  df-wwlkn 26208  df-clwwlk 26279  df-clwwlkn 26280  df-vdgr 26421  df-rgra 26451  df-rusgra 26452  df-frgra 26516 This theorem is referenced by:  numclwwlk7  26641
 Copyright terms: Public domain W3C validator