Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlk6 Structured version   Visualization version   GIF version

Theorem av-numclwwlk6 41544
 Description: For a prime divisor 𝑃 of 𝐾 − 1, the total number of closed walks of length 𝑃 in a 𝐾-regular friendship graph is equal modulo 𝑃 to the number of vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
av-numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
av-numclwwlk6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑃 ClWWalkSN 𝐺)) mod 𝑃) = ((#‘𝑉) mod 𝑃))

Proof of Theorem av-numclwwlk6
Dummy variables 𝑛 𝑢 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 av-numclwwlk6.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21finrusgrfusgr 40765 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
323adant2 1073 . . . 4 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
4 prmnn 15226 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
54adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
6 eqid 2610 . . . . 5 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
71, 6av-numclwwlk4 41540 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑃 ∈ ℕ) → (#‘(𝑃 ClWWalkSN 𝐺)) = Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)))
83, 5, 7syl2an 493 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑃 ClWWalkSN 𝐺)) = Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)))
98oveq1d 6564 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑃 ClWWalkSN 𝐺)) mod 𝑃) = (Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃))
105adantl 481 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
11 simp3 1056 . . . . 5 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin)
1211adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
1312adantr 480 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑉 ∈ Fin)
14 simpr 476 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑥𝑉)
1510adantr 480 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑃 ∈ ℕ)
166, 1av-numclwwlkffin 41512 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑥𝑉𝑃 ∈ ℕ) → (𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃) ∈ Fin)
1713, 14, 15, 16syl3anc 1318 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃) ∈ Fin)
18 hashcl 13009 . . . . . . 7 ((𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃) ∈ Fin → (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) ∈ ℕ0)
1917, 18syl 17 . . . . . 6 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) ∈ ℕ0)
2019nn0zd 11356 . . . . 5 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) ∈ ℤ)
2120ralrimiva 2949 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ∀𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) ∈ ℤ)
2210, 12, 21modfsummod 14367 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = (Σ𝑥𝑉 ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) mod 𝑃))
23 simpl 472 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
24 simpr 476 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
2524anim1i 590 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ∧ 𝑥𝑉))
2625ancomd 466 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
27 3anass 1035 . . . . . . 7 ((𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
2826, 27sylibr 223 . . . . . 6 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
29 fveq1 6102 . . . . . . . . . . 11 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
3029eqeq1d 2612 . . . . . . . . . 10 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑣 ↔ (𝑢‘0) = 𝑣))
3130cbvrabv 3172 . . . . . . . . 9 {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑢‘0) = 𝑣}
3231a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ ℕ) → {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑢‘0) = 𝑣})
3332mpt2eq3ia 6618 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑢‘0) = 𝑣})
341, 33av-numclwwlk5 41542 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = 1)
3523, 28, 34syl2an2r 872 . . . . 5 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = 1)
3635sumeq2dv 14281 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = Σ𝑥𝑉 1)
3736oveq1d 6564 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
3822, 37eqtrd 2644 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
39 1cnd 9935 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 1 ∈ ℂ)
40 fsumconst 14364 . . . . 5 ((𝑉 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝑉 1 = ((#‘𝑉) · 1))
4111, 39, 40syl2an 493 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = ((#‘𝑉) · 1))
42 hashcl 13009 . . . . . . . 8 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
4342nn0red 11229 . . . . . . 7 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℝ)
44 ax-1rid 9885 . . . . . . 7 ((#‘𝑉) ∈ ℝ → ((#‘𝑉) · 1) = (#‘𝑉))
4543, 44syl 17 . . . . . 6 (𝑉 ∈ Fin → ((#‘𝑉) · 1) = (#‘𝑉))
46453ad2ant3 1077 . . . . 5 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((#‘𝑉) · 1) = (#‘𝑉))
4746adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘𝑉) · 1) = (#‘𝑉))
4841, 47eqtrd 2644 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = (#‘𝑉))
4948oveq1d 6564 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 1 mod 𝑃) = ((#‘𝑉) mod 𝑃))
509, 38, 493eqtrd 2648 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑃 ClWWalkSN 𝐺)) mod 𝑃) = ((#‘𝑉) mod 𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254   mod cmo 12530  #chash 12979  Σcsu 14264   ∥ cdvds 14821  ℙcprime 15223  Vtxcvtx 25673   FinUSGraph cfusgr 40535   RegUSGraph crusgr 40756   ClWWalkSN cclwwlksn 41184   FriendGraph cfrgr 41428 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-s2 13444  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-umgr 25750  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-fusgr 40536  df-nbgr 40554  df-vtxdg 40682  df-rgr 40757  df-rusgr 40758  df-wwlks 41033  df-wwlksn 41034  df-clwwlks 41185  df-clwwlksn 41186  df-frgr 41429 This theorem is referenced by:  av-numclwwlk7  41545
 Copyright terms: Public domain W3C validator