Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlk5 Structured version   Visualization version   GIF version

Theorem av-numclwwlk5 41542
Description: Statement 13 in [Huneke] p. 2: "Let p be a prime divisor of k-1; then f(p) = 1 (mod p) [for each vertex v]". (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.)
Hypotheses
Ref Expression
av-numclwwlk4.v 𝑉 = (Vtx‘𝐺)
av-numclwwlk4.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
av-numclwwlk5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑤,𝐹   𝑤,𝐾   𝑃,𝑛,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem av-numclwwlk5
Dummy variables 𝑚 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1057 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐺 RegUSGraph 𝐾)
2 simpr1 1060 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝑋𝑉)
3 av-numclwwlk4.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43finrusgrfusgr 40765 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
543adant2 1073 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
65adantl 481 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FinUSGraph )
7 simpr1 1060 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
8 ne0i 3880 . . . . . . . . . . 11 (𝑋𝑉𝑉 ≠ ∅)
98adantr 480 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝑉 ≠ ∅)
103frusgrnn0 40771 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
116, 7, 9, 10syl3anc 1318 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
1211ex 449 . . . . . . . 8 (𝑋𝑉 → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
13123ad2ant1 1075 . . . . . . 7 ((𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
1413impcom 445 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
151, 2, 143jca 1235 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0))
16 simpr3 1062 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 2 ∥ (𝐾 − 1))
17 av-numclwwlk4.f . . . . . 6 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
183, 17av-numclwwlk5lem 41541 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((#‘(𝑋𝐹2)) mod 2) = 1))
1915, 16, 18sylc 63 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹2)) mod 2) = 1)
2019a1i 11 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹2)) mod 2) = 1))
21 eleq1 2676 . . . . 5 (𝑃 = 2 → (𝑃 ∈ ℙ ↔ 2 ∈ ℙ))
22 breq1 4586 . . . . 5 (𝑃 = 2 → (𝑃 ∥ (𝐾 − 1) ↔ 2 ∥ (𝐾 − 1)))
2321, 223anbi23d 1394 . . . 4 (𝑃 = 2 → ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))))
2423anbi2d 736 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ↔ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)))))
25 oveq2 6557 . . . . . 6 (𝑃 = 2 → (𝑋𝐹𝑃) = (𝑋𝐹2))
2625fveq2d 6107 . . . . 5 (𝑃 = 2 → (#‘(𝑋𝐹𝑃)) = (#‘(𝑋𝐹2)))
27 id 22 . . . . 5 (𝑃 = 2 → 𝑃 = 2)
2826, 27oveq12d 6567 . . . 4 (𝑃 = 2 → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = ((#‘(𝑋𝐹2)) mod 2))
2928eqeq1d 2612 . . 3 (𝑃 = 2 → (((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1 ↔ ((#‘(𝑋𝐹2)) mod 2) = 1))
3020, 24, 293imtr4d 282 . 2 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1))
31 3simpa 1051 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3231adantr 480 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3332adantl 481 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
34 simprl3 1101 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑉 ∈ Fin)
35 simprr1 1102 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑋𝑉)
36 eldifsn 4260 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
37 oddprmge3 15250 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
3836, 37sylbir 224 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℤ‘3))
3938ex 449 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
40393ad2ant2 1076 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4140adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4241impcom 445 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑃 ∈ (ℤ‘3))
43 fveq1 6102 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢‘0) = (𝑤‘0))
4443eqeq1d 2612 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘0) = 𝑣 ↔ (𝑤‘0) = 𝑣))
45 fveq2 6103 . . . . . . . . . . . 12 (𝑢 = 𝑤 → ( lastS ‘𝑢) = ( lastS ‘𝑤))
4645neeq1d 2841 . . . . . . . . . . 11 (𝑢 = 𝑤 → (( lastS ‘𝑢) ≠ 𝑣 ↔ ( lastS ‘𝑤) ≠ 𝑣))
4744, 46anbi12d 743 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)))
4847cbvrabv 3172 . . . . . . . . 9 {𝑢 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)} = {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)}
4948a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ ℕ) → {𝑢 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)} = {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
5049mpt2eq3ia 6618 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑢 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
51 eqeq2 2621 . . . . . . . . . 10 (𝑧 = 𝑣 → ((𝑢‘0) = 𝑧 ↔ (𝑢‘0) = 𝑣))
5251anbi1d 737 . . . . . . . . 9 (𝑧 = 𝑣 → (((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0)) ↔ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))))
5352rabbidv 3164 . . . . . . . 8 (𝑧 = 𝑣 → {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))})
54 oveq1 6556 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚 ClWWalkSN 𝐺) = (𝑛 ClWWalkSN 𝐺))
55 oveq1 6556 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 2) = (𝑛 − 2))
5655fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑢‘(𝑚 − 2)) = (𝑢‘(𝑛 − 2)))
5756neeq1d 2841 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑢‘(𝑚 − 2)) ≠ (𝑢‘0) ↔ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0)))
5857anbi2d 736 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0)) ↔ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))))
5954, 58rabeqbidv 3168 . . . . . . . . 9 (𝑚 = 𝑛 → {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))})
60 fveq1 6102 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢‘(𝑛 − 2)) = (𝑤‘(𝑛 − 2)))
6160, 43neeq12d 2843 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘(𝑛 − 2)) ≠ (𝑢‘0) ↔ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0)))
6244, 61anbi12d 743 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0)) ↔ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))))
6362cbvrabv 3172 . . . . . . . . 9 {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}
6459, 63syl6eq 2660 . . . . . . . 8 (𝑚 = 𝑛 → {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
6553, 64cbvmpt2v 6633 . . . . . . 7 (𝑧𝑉, 𝑚 ∈ ℕ ↦ {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
6660, 43eqeq12d 2625 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘(𝑛 − 2)) = (𝑢‘0) ↔ (𝑤‘(𝑛 − 2)) = (𝑤‘0)))
6744, 66anbi12d 743 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0)) ↔ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))))
6867cbvrabv 3172 . . . . . . . . 9 {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}
6968a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ (ℤ‘2)) → {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
7069mpt2eq3ia 6618 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
713, 50, 17, 65, 70av-numclwwlk3 41539 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑃 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑃)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
7233, 34, 35, 42, 71syl13anc 1320 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (#‘(𝑋𝐹𝑃)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
7372oveq1d 6564 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
74123ad2ant1 1075 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
7574impcom 445 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
7675nn0zd 11356 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
77 peano2zm 11297 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
78 zre 11258 . . . . . . . . 9 ((𝐾 − 1) ∈ ℤ → (𝐾 − 1) ∈ ℝ)
7976, 77, 783syl 18 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
80 simpl3 1059 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
81 simpr1 1060 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑋𝑉)
82 prmm2nn0 15248 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
83823ad2ant2 1076 . . . . . . . . . . . 12 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 − 2) ∈ ℕ0)
8483adantl 481 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 − 2) ∈ ℕ0)
8580, 81, 843jca 1235 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑃 − 2) ∈ ℕ0))
8617, 3av-numclwwlkffin0 41513 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑃 − 2) ∈ ℕ0) → (𝑋𝐹(𝑃 − 2)) ∈ Fin)
87 hashcl 13009 . . . . . . . . . 10 ((𝑋𝐹(𝑃 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℕ0)
8885, 86, 873syl 18 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℕ0)
8988nn0red 11229 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℝ)
9079, 89remulcld 9949 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ)
9175nn0red 11229 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℝ)
9291, 84reexpcld 12887 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾↑(𝑃 − 2)) ∈ ℝ)
93 prmnn 15226 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9493nnrpd 11746 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
95943ad2ant2 1076 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℝ+)
9695adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
9790, 92, 963jca 1235 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
9897adantl 481 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
99 modaddabs 12570 . . . . . 6 ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
10099eqcomd 2616 . . . . 5 ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
10198, 100syl 17 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
102933ad2ant2 1076 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
103102adantl 481 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
104 nn0z 11277 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
10575, 104, 773syl 18 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
10688nn0zd 11356 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ)
107103, 105, 1063jca 1235 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ))
108 simpr3 1062 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
109 mulmoddvds 14889 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) = 0))
110107, 108, 109sylc 63 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) = 0)
111 simpr2 1061 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℙ)
112111, 76jca 553 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ))
113 powm2modprm 15346 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1))
114112, 108, 113sylc 63 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1)
115110, 114oveq12d 6567 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) = (0 + 1))
116115oveq1d 6564 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
117 0p1e1 11009 . . . . . . . . . 10 (0 + 1) = 1
118117oveq1i 6559 . . . . . . . . 9 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
11993nnred 10912 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
120 prmgt1 15247 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
121 1mod 12564 . . . . . . . . . 10 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
122119, 120, 121syl2anc 691 . . . . . . . . 9 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
123118, 122syl5eq 2656 . . . . . . . 8 (𝑃 ∈ ℙ → ((0 + 1) mod 𝑃) = 1)
1241233ad2ant2 1076 . . . . . . 7 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((0 + 1) mod 𝑃) = 1)
125124adantl 481 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
126116, 125eqtrd 2644 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
127126adantl 481 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
12873, 101, 1273eqtrd 2648 . . 3 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
129128ex 449 . 2 (𝑃 ≠ 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1))
13030, 129pm2.61ine 2865 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {crab 2900  cdif 3537  c0 3874  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  cn 10897  2c2 10947  3c3 10948  0cn0 11169  cz 11254  cuz 11563  +crp 11708   mod cmo 12530  cexp 12722  #chash 12979   lastS clsw 13147  cdvds 14821  cprime 15223  Vtxcvtx 25673   FinUSGraph cfusgr 40535   RegUSGraph crusgr 40756   WWalkSN cwwlksn 41029   ClWWalkSN cclwwlksn 41184   FriendGraph cfrgr 41428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-s2 13444  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-umgr 25750  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-fusgr 40536  df-nbgr 40554  df-vtxdg 40682  df-rgr 40757  df-rusgr 40758  df-wwlks 41033  df-wwlksn 41034  df-clwwlks 41185  df-clwwlksn 41186  df-frgr 41429
This theorem is referenced by:  av-numclwwlk6  41544
  Copyright terms: Public domain W3C validator