Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlk5 Structured version   Visualization version   GIF version

Theorem av-numclwwlk5 41542
 Description: Statement 13 in [Huneke] p. 2: "Let p be a prime divisor of k-1; then f(p) = 1 (mod p) [for each vertex v]". (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.)
Hypotheses
Ref Expression
av-numclwwlk4.v 𝑉 = (Vtx‘𝐺)
av-numclwwlk4.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
av-numclwwlk5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑤,𝐹   𝑤,𝐾   𝑃,𝑛,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem av-numclwwlk5
Dummy variables 𝑚 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1057 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐺 RegUSGraph 𝐾)
2 simpr1 1060 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝑋𝑉)
3 av-numclwwlk4.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43finrusgrfusgr 40765 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
543adant2 1073 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
65adantl 481 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FinUSGraph )
7 simpr1 1060 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
8 ne0i 3880 . . . . . . . . . . 11 (𝑋𝑉𝑉 ≠ ∅)
98adantr 480 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝑉 ≠ ∅)
103frusgrnn0 40771 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
116, 7, 9, 10syl3anc 1318 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
1211ex 449 . . . . . . . 8 (𝑋𝑉 → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
13123ad2ant1 1075 . . . . . . 7 ((𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
1413impcom 445 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
151, 2, 143jca 1235 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0))
16 simpr3 1062 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 2 ∥ (𝐾 − 1))
17 av-numclwwlk4.f . . . . . 6 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
183, 17av-numclwwlk5lem 41541 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((#‘(𝑋𝐹2)) mod 2) = 1))
1915, 16, 18sylc 63 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹2)) mod 2) = 1)
2019a1i 11 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹2)) mod 2) = 1))
21 eleq1 2676 . . . . 5 (𝑃 = 2 → (𝑃 ∈ ℙ ↔ 2 ∈ ℙ))
22 breq1 4586 . . . . 5 (𝑃 = 2 → (𝑃 ∥ (𝐾 − 1) ↔ 2 ∥ (𝐾 − 1)))
2321, 223anbi23d 1394 . . . 4 (𝑃 = 2 → ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))))
2423anbi2d 736 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ↔ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)))))
25 oveq2 6557 . . . . . 6 (𝑃 = 2 → (𝑋𝐹𝑃) = (𝑋𝐹2))
2625fveq2d 6107 . . . . 5 (𝑃 = 2 → (#‘(𝑋𝐹𝑃)) = (#‘(𝑋𝐹2)))
27 id 22 . . . . 5 (𝑃 = 2 → 𝑃 = 2)
2826, 27oveq12d 6567 . . . 4 (𝑃 = 2 → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = ((#‘(𝑋𝐹2)) mod 2))
2928eqeq1d 2612 . . 3 (𝑃 = 2 → (((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1 ↔ ((#‘(𝑋𝐹2)) mod 2) = 1))
3020, 24, 293imtr4d 282 . 2 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1))
31 3simpa 1051 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3231adantr 480 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3332adantl 481 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
34 simprl3 1101 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑉 ∈ Fin)
35 simprr1 1102 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑋𝑉)
36 eldifsn 4260 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
37 oddprmge3 15250 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
3836, 37sylbir 224 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℤ‘3))
3938ex 449 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
40393ad2ant2 1076 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4140adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4241impcom 445 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑃 ∈ (ℤ‘3))
43 fveq1 6102 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢‘0) = (𝑤‘0))
4443eqeq1d 2612 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘0) = 𝑣 ↔ (𝑤‘0) = 𝑣))
45 fveq2 6103 . . . . . . . . . . . 12 (𝑢 = 𝑤 → ( lastS ‘𝑢) = ( lastS ‘𝑤))
4645neeq1d 2841 . . . . . . . . . . 11 (𝑢 = 𝑤 → (( lastS ‘𝑢) ≠ 𝑣 ↔ ( lastS ‘𝑤) ≠ 𝑣))
4744, 46anbi12d 743 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)))
4847cbvrabv 3172 . . . . . . . . 9 {𝑢 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)} = {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)}
4948a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ ℕ) → {𝑢 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)} = {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
5049mpt2eq3ia 6618 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑢 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
51 eqeq2 2621 . . . . . . . . . 10 (𝑧 = 𝑣 → ((𝑢‘0) = 𝑧 ↔ (𝑢‘0) = 𝑣))
5251anbi1d 737 . . . . . . . . 9 (𝑧 = 𝑣 → (((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0)) ↔ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))))
5352rabbidv 3164 . . . . . . . 8 (𝑧 = 𝑣 → {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))})
54 oveq1 6556 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚 ClWWalkSN 𝐺) = (𝑛 ClWWalkSN 𝐺))
55 oveq1 6556 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 2) = (𝑛 − 2))
5655fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑢‘(𝑚 − 2)) = (𝑢‘(𝑛 − 2)))
5756neeq1d 2841 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑢‘(𝑚 − 2)) ≠ (𝑢‘0) ↔ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0)))
5857anbi2d 736 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0)) ↔ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))))
5954, 58rabeqbidv 3168 . . . . . . . . 9 (𝑚 = 𝑛 → {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))})
60 fveq1 6102 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢‘(𝑛 − 2)) = (𝑤‘(𝑛 − 2)))
6160, 43neeq12d 2843 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘(𝑛 − 2)) ≠ (𝑢‘0) ↔ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0)))
6244, 61anbi12d 743 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0)) ↔ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))))
6362cbvrabv 3172 . . . . . . . . 9 {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}
6459, 63syl6eq 2660 . . . . . . . 8 (𝑚 = 𝑛 → {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
6553, 64cbvmpt2v 6633 . . . . . . 7 (𝑧𝑉, 𝑚 ∈ ℕ ↦ {𝑢 ∈ (𝑚 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
6660, 43eqeq12d 2625 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘(𝑛 − 2)) = (𝑢‘0) ↔ (𝑤‘(𝑛 − 2)) = (𝑤‘0)))
6744, 66anbi12d 743 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0)) ↔ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))))
6867cbvrabv 3172 . . . . . . . . 9 {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}
6968a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ (ℤ‘2)) → {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
7069mpt2eq3ia 6618 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
713, 50, 17, 65, 70av-numclwwlk3 41539 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑃 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑃)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
7233, 34, 35, 42, 71syl13anc 1320 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (#‘(𝑋𝐹𝑃)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
7372oveq1d 6564 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
74123ad2ant1 1075 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
7574impcom 445 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
7675nn0zd 11356 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
77 peano2zm 11297 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
78 zre 11258 . . . . . . . . 9 ((𝐾 − 1) ∈ ℤ → (𝐾 − 1) ∈ ℝ)
7976, 77, 783syl 18 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
80 simpl3 1059 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
81 simpr1 1060 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑋𝑉)
82 prmm2nn0 15248 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
83823ad2ant2 1076 . . . . . . . . . . . 12 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 − 2) ∈ ℕ0)
8483adantl 481 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 − 2) ∈ ℕ0)
8580, 81, 843jca 1235 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑃 − 2) ∈ ℕ0))
8617, 3av-numclwwlkffin0 41513 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑃 − 2) ∈ ℕ0) → (𝑋𝐹(𝑃 − 2)) ∈ Fin)
87 hashcl 13009 . . . . . . . . . 10 ((𝑋𝐹(𝑃 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℕ0)
8885, 86, 873syl 18 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℕ0)
8988nn0red 11229 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℝ)
9079, 89remulcld 9949 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ)
9175nn0red 11229 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℝ)
9291, 84reexpcld 12887 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾↑(𝑃 − 2)) ∈ ℝ)
93 prmnn 15226 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9493nnrpd 11746 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
95943ad2ant2 1076 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℝ+)
9695adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
9790, 92, 963jca 1235 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
9897adantl 481 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
99 modaddabs 12570 . . . . . 6 ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
10099eqcomd 2616 . . . . 5 ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
10198, 100syl 17 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
102933ad2ant2 1076 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
103102adantl 481 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
104 nn0z 11277 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
10575, 104, 773syl 18 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
10688nn0zd 11356 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ)
107103, 105, 1063jca 1235 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ))
108 simpr3 1062 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
109 mulmoddvds 14889 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) = 0))
110107, 108, 109sylc 63 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) = 0)
111 simpr2 1061 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℙ)
112111, 76jca 553 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ))
113 powm2modprm 15346 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1))
114112, 108, 113sylc 63 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1)
115110, 114oveq12d 6567 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) = (0 + 1))
116115oveq1d 6564 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
117 0p1e1 11009 . . . . . . . . . 10 (0 + 1) = 1
118117oveq1i 6559 . . . . . . . . 9 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
11993nnred 10912 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
120 prmgt1 15247 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
121 1mod 12564 . . . . . . . . . 10 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
122119, 120, 121syl2anc 691 . . . . . . . . 9 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
123118, 122syl5eq 2656 . . . . . . . 8 (𝑃 ∈ ℙ → ((0 + 1) mod 𝑃) = 1)
1241233ad2ant2 1076 . . . . . . 7 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((0 + 1) mod 𝑃) = 1)
125124adantl 481 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
126116, 125eqtrd 2644 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
127126adantl 481 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
12873, 101, 1273eqtrd 2648 . . 3 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
129128ex 449 . 2 (𝑃 ≠ 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1))
13030, 129pm2.61ine 2865 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  {crab 2900   ∖ cdif 3537  ∅c0 3874  {csn 4125   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   − cmin 10145  ℕcn 10897  2c2 10947  3c3 10948  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708   mod cmo 12530  ↑cexp 12722  #chash 12979   lastS clsw 13147   ∥ cdvds 14821  ℙcprime 15223  Vtxcvtx 25673   FinUSGraph cfusgr 40535   RegUSGraph crusgr 40756   WWalkSN cwwlksn 41029   ClWWalkSN cclwwlksn 41184   FriendGraph cfrgr 41428 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-s2 13444  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-umgr 25750  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-fusgr 40536  df-nbgr 40554  df-vtxdg 40682  df-rgr 40757  df-rusgr 40758  df-wwlks 41033  df-wwlksn 41034  df-clwwlks 41185  df-clwwlksn 41186  df-frgr 41429 This theorem is referenced by:  av-numclwwlk6  41544
 Copyright terms: Public domain W3C validator