Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlk3 Structured version   Visualization version   GIF version

Theorem av-numclwwlk3 41539
Description: Statement 12 in [Huneke] p. 2: "Thus f(n) = (k - 1)f(n - 2) + k^(n-2)." - the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) is the sum of the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) with v(n-2) = v(n) (see numclwwlk1 26625) and with v(n-2) =/= v(n) ( see av-numclwwlk2 41537): f(n) = kf(n-2) + k^(n-2) - f(n-2) = (k - 1)f(n - 2) + k^(n-2). (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Revised by AV, 1-Jun-2021.)
Hypotheses
Ref Expression
av-numclwwlk.v 𝑉 = (Vtx‘𝐺)
av-numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
av-numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
av-numclwwlk.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
av-numclwwlk3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝐾   𝑤,𝑉   𝑣,𝐻   𝑤,𝐶   𝑤,𝐹
Allowed substitution hints:   𝐶(𝑣,𝑛)   𝑄(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐻(𝑤,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem av-numclwwlk3
StepHypRef Expression
1 simpl 472 . . . 4 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) → 𝐺 RegUSGraph 𝐾)
2 simp1 1054 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ∈ Fin)
3 av-numclwwlk.v . . . . 5 𝑉 = (Vtx‘𝐺)
43finrusgrfusgr 40765 . . . 4 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
51, 2, 4syl2an 493 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ FinUSGraph )
6 simpr2 1061 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
7 uzuzle23 11605 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
873ad2ant3 1077 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘2))
98adantl 481 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘2))
10 av-numclwwlk.q . . . 4 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
11 av-numclwwlk.f . . . 4 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
12 av-numclwwlk.h . . . 4 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
13 av-numclwwlk.c . . . 4 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
143, 10, 11, 12, 13av-numclwwlk3lem 41538 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (#‘(𝑋𝐹𝑁)) = ((#‘(𝑋𝐻𝑁)) + (#‘(𝑋𝐶𝑁))))
155, 6, 9, 14syl21anc 1317 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = ((#‘(𝑋𝐻𝑁)) + (#‘(𝑋𝐶𝑁))))
163, 10, 11, 12av-numclwwlk2 41537 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))))
171, 2anim12ci 589 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾))
18 3simpc 1053 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉𝑁 ∈ (ℤ‘3)))
1918adantl 481 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝑉𝑁 ∈ (ℤ‘3)))
203, 11, 13av-numclwwlk1 41528 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐶𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
2117, 19, 20syl2anc 691 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐶𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
2216, 21oveq12d 6567 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋𝐻𝑁)) + (#‘(𝑋𝐶𝑁))) = (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))))
23 simpll 786 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 RegUSGraph 𝐾)
24 ne0i 3880 . . . . . . 7 (𝑋𝑉𝑉 ≠ ∅)
25243ad2ant2 1076 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ≠ ∅)
2625adantl 481 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ≠ ∅)
273frusgrnn0 40771 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
285, 23, 26, 27syl3anc 1318 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℕ0)
2928nn0cnd 11230 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℂ)
30 uz3m2nn 11607 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
31303anim3i 1243 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
3231adantl 481 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
3311, 3av-numclwwlkffin 41512 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (𝑋𝐹(𝑁 − 2)) ∈ Fin)
34 hashcl 13009 . . . . 5 ((𝑋𝐹(𝑁 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℕ0)
3534nn0cnd 11230 . . . 4 ((𝑋𝐹(𝑁 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
3632, 33, 353syl 18 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
37 av-numclwlk3lem3 41506 . . 3 ((𝐾 ∈ ℂ ∧ (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
3829, 36, 9, 37syl3anc 1318 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
3915, 22, 383eqtrd 2648 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {crab 2900  c0 3874   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  2c2 10947  3c3 10948  0cn0 11169  cuz 11563  cexp 12722  #chash 12979   lastS clsw 13147  Vtxcvtx 25673   FinUSGraph cfusgr 40535   RegUSGraph crusgr 40756   WWalkSN cwwlksn 41029   ClWWalkSN cclwwlksn 41184   FriendGraph cfrgr 41428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-s2 13444  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-umgr 25750  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-fusgr 40536  df-nbgr 40554  df-vtxdg 40682  df-rgr 40757  df-rusgr 40758  df-wwlks 41033  df-wwlksn 41034  df-clwwlks 41185  df-clwwlksn 41186  df-frgr 41429
This theorem is referenced by:  av-numclwwlk5  41542
  Copyright terms: Public domain W3C validator