Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlk5lem Structured version   Visualization version   GIF version

Theorem av-numclwwlk5lem 41541
 Description: Lemma for av-numclwwlk5 41542. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.)
Hypotheses
Ref Expression
av-numclwwlk4.v 𝑉 = (Vtx‘𝐺)
av-numclwwlk4.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
av-numclwwlk5lem ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((#‘(𝑋𝐹2)) mod 2) = 1))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉
Allowed substitution hints:   𝐹(𝑤,𝑣,𝑛)   𝐾(𝑤,𝑣,𝑛)

Proof of Theorem av-numclwwlk5lem
StepHypRef Expression
1 av-numclwwlk4.f . . . 4 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
2 av-numclwwlk4.v . . . 4 𝑉 = (Vtx‘𝐺)
3 eqid 2610 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
41, 2, 3av-numclwwlkovf2num 41516 . . 3 ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (#‘(𝑋𝐹2)) = 𝐾)
543adant3 1074 . 2 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (#‘(𝑋𝐹2)) = 𝐾)
6 oveq1 6556 . . . . 5 ((#‘(𝑋𝐹2)) = 𝐾 → ((#‘(𝑋𝐹2)) mod 2) = (𝐾 mod 2))
76ad2antrr 758 . . . 4 ((((#‘(𝑋𝐹2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((#‘(𝑋𝐹2)) mod 2) = (𝐾 mod 2))
8 2prm 15243 . . . . . . . . 9 2 ∈ ℙ
9 nn0z 11277 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
10 modprm1div 15340 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝐾 ∈ ℤ) → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1)))
118, 9, 10sylancr 694 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1)))
1211biimprd 237 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1))
13123ad2ant3 1077 . . . . . 6 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1))
1413adantl 481 . . . . 5 (((#‘(𝑋𝐹2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1))
1514imp 444 . . . 4 ((((#‘(𝑋𝐹2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → (𝐾 mod 2) = 1)
167, 15eqtrd 2644 . . 3 ((((#‘(𝑋𝐹2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((#‘(𝑋𝐹2)) mod 2) = 1)
1716ex 449 . 2 (((#‘(𝑋𝐹2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → ((#‘(𝑋𝐹2)) mod 2) = 1))
185, 17mpancom 700 1 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((#‘(𝑋𝐹2)) mod 2) = 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  0cc0 9815  1c1 9816   − cmin 10145  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254   mod cmo 12530  #chash 12979   ∥ cdvds 14821  ℙcprime 15223  Vtxcvtx 25673  Edgcedga 25792   RegUSGraph crusgr 40756   ClWWalkSN cclwwlksn 41184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-umgr 25750  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-nbgr 40554  df-vtxdg 40682  df-rgr 40757  df-rusgr 40758  df-clwwlks 41185  df-clwwlksn 41186 This theorem is referenced by:  av-numclwwlk5  41542
 Copyright terms: Public domain W3C validator