![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnfv | Structured version Visualization version GIF version |
Description: Singleton of function value. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2617 | . . . 4 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
2 | fnbrfvb 6146 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
3 | 1, 2 | syl5bb 271 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑦 = (𝐹‘𝐵) ↔ 𝐵𝐹𝑦)) |
4 | 3 | abbidv 2728 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} = {𝑦 ∣ 𝐵𝐹𝑦}) |
5 | df-sn 4126 | . . 3 ⊢ {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} | |
6 | 5 | a1i 11 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)}) |
7 | fnrel 5903 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
8 | relimasn 5407 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
10 | 9 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
11 | 4, 6, 10 | 3eqtr4d 2654 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cab 2596 {csn 4125 class class class wbr 4583 “ cima 5041 Rel wrel 5043 Fn wfn 5799 ‘cfv 5804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-fv 5812 |
This theorem is referenced by: fnimapr 6172 funfv 6175 fvco2 6183 fvimacnvi 6239 fvimacnvALT 6244 fsn2 6309 fparlem3 7166 fparlem4 7167 suppval1 7188 suppsnop 7196 domunsncan 7945 phplem4 8027 domunfican 8118 fiint 8122 infdifsn 8437 cantnfp1lem3 8460 symgfixelsi 17678 dprdf1o 18254 frlmlbs 19955 f1lindf 19980 cnt1 20964 xkohaus 21266 xkoptsub 21267 ustuqtop3 21857 2pthlem2 26126 eupath2lem3 26506 eulerpartlemmf 29764 poimirlem4 32583 poimirlem6 32585 poimirlem7 32586 poimirlem9 32588 poimirlem13 32592 poimirlem14 32593 poimirlem16 32595 poimirlem19 32598 grpokerinj 32862 k0004lem3 37467 funcoressn 39856 resunimafz0 40368 |
Copyright terms: Public domain | W3C validator |