![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniabio | Structured version Visualization version GIF version |
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
uniabio | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2724 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
2 | 1 | biimpi 205 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) |
3 | df-sn 4126 | . . . 4 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
4 | 2, 3 | syl6eqr 2662 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
5 | 4 | unieqd 4382 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) |
6 | vex 3176 | . . 3 ⊢ 𝑦 ∈ V | |
7 | 6 | unisn 4387 | . 2 ⊢ ∪ {𝑦} = 𝑦 |
8 | 5, 7 | syl6eq 2660 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 = wceq 1475 {cab 2596 {csn 4125 ∪ cuni 4372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-v 3175 df-un 3545 df-sn 4126 df-pr 4128 df-uni 4373 |
This theorem is referenced by: iotaval 5779 iotauni 5780 |
Copyright terms: Public domain | W3C validator |