MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap2 Structured version   Visualization version   GIF version

Theorem infmap2 8923
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 9277 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → (𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infmap2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . 3 (𝐵 = ∅ → (𝐴𝑚 𝐵) = (𝐴𝑚 ∅))
2 breq2 4587 . . . . 5 (𝐵 = ∅ → (𝑥𝐵𝑥 ≈ ∅))
32anbi2d 736 . . . 4 (𝐵 = ∅ → ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥 ≈ ∅)))
43abbidv 2728 . . 3 (𝐵 = ∅ → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)})
51, 4breq12d 4596 . 2 (𝐵 = ∅ → ((𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ↔ (𝐴𝑚 ∅) ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)}))
6 simpl2 1058 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵𝐴)
7 reldom 7847 . . . . . . . . . . 11 Rel ≼
87brrelexi 5082 . . . . . . . . . 10 (𝐵𝐴𝐵 ∈ V)
96, 8syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ∈ V)
107brrelex2i 5083 . . . . . . . . . 10 (𝐵𝐴𝐴 ∈ V)
116, 10syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V)
12 xpcomeng 7937 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
139, 11, 12syl2anc 691 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
14 simpl3 1059 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) ∈ dom card)
15 simpr 476 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
16 mapdom3 8017 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴𝑚 𝐵))
1711, 9, 15, 16syl3anc 1318 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴𝑚 𝐵))
18 numdom 8744 . . . . . . . . . 10 (((𝐴𝑚 𝐵) ∈ dom card ∧ 𝐴 ≼ (𝐴𝑚 𝐵)) → 𝐴 ∈ dom card)
1914, 17, 18syl2anc 691 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ dom card)
20 simpl1 1057 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ω ≼ 𝐴)
21 infxpabs 8917 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
2219, 20, 15, 6, 21syl22anc 1319 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≈ 𝐴)
23 entr 7894 . . . . . . . 8 (((𝐵 × 𝐴) ≈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ≈ 𝐴) → (𝐵 × 𝐴) ≈ 𝐴)
2413, 22, 23syl2anc 691 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ 𝐴)
25 ssenen 8019 . . . . . . 7 ((𝐵 × 𝐴) ≈ 𝐴 → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
2624, 25syl 17 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
27 relen 7846 . . . . . . 7 Rel ≈
2827brrelexi 5082 . . . . . 6 ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V)
2926, 28syl 17 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V)
30 abid2 2732 . . . . . 6 {𝑥𝑥 ∈ (𝐴𝑚 𝐵)} = (𝐴𝑚 𝐵)
31 elmapi 7765 . . . . . . . 8 (𝑥 ∈ (𝐴𝑚 𝐵) → 𝑥:𝐵𝐴)
32 fssxp 5973 . . . . . . . . 9 (𝑥:𝐵𝐴𝑥 ⊆ (𝐵 × 𝐴))
33 ffun 5961 . . . . . . . . . . 11 (𝑥:𝐵𝐴 → Fun 𝑥)
34 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
3534fundmen 7916 . . . . . . . . . . 11 (Fun 𝑥 → dom 𝑥𝑥)
36 ensym 7891 . . . . . . . . . . 11 (dom 𝑥𝑥𝑥 ≈ dom 𝑥)
3733, 35, 363syl 18 . . . . . . . . . 10 (𝑥:𝐵𝐴𝑥 ≈ dom 𝑥)
38 fdm 5964 . . . . . . . . . 10 (𝑥:𝐵𝐴 → dom 𝑥 = 𝐵)
3937, 38breqtrd 4609 . . . . . . . . 9 (𝑥:𝐵𝐴𝑥𝐵)
4032, 39jca 553 . . . . . . . 8 (𝑥:𝐵𝐴 → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵))
4131, 40syl 17 . . . . . . 7 (𝑥 ∈ (𝐴𝑚 𝐵) → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵))
4241ss2abi 3637 . . . . . 6 {𝑥𝑥 ∈ (𝐴𝑚 𝐵)} ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}
4330, 42eqsstr3i 3599 . . . . 5 (𝐴𝑚 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}
44 ssdomg 7887 . . . . 5 ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V → ((𝐴𝑚 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} → (𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}))
4529, 43, 44mpisyl 21 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)})
46 domentr 7901 . . . 4 (((𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∧ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)}) → (𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
4745, 26, 46syl2anc 691 . . 3 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
48 ovex 6577 . . . . . . 7 (𝐴𝑚 𝐵) ∈ V
4948mptex 6390 . . . . . 6 (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ∈ V
5049rnex 6992 . . . . 5 ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ∈ V
51 ensym 7891 . . . . . . . . . . . 12 (𝑥𝐵𝐵𝑥)
5251ad2antll 761 . . . . . . . . . . 11 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → 𝐵𝑥)
53 bren 7850 . . . . . . . . . . 11 (𝐵𝑥 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝑥)
5452, 53sylib 207 . . . . . . . . . 10 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓 𝑓:𝐵1-1-onto𝑥)
55 f1of 6050 . . . . . . . . . . . . . . . 16 (𝑓:𝐵1-1-onto𝑥𝑓:𝐵𝑥)
5655adantl 481 . . . . . . . . . . . . . . 15 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓:𝐵𝑥)
57 simplrl 796 . . . . . . . . . . . . . . 15 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑥𝐴)
5856, 57fssd 5970 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓:𝐵𝐴)
5911, 9elmapd 7758 . . . . . . . . . . . . . . 15 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴𝑚 𝐵) ↔ 𝑓:𝐵𝐴))
6059ad2antrr 758 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → (𝑓 ∈ (𝐴𝑚 𝐵) ↔ 𝑓:𝐵𝐴))
6158, 60mpbird 246 . . . . . . . . . . . . 13 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓 ∈ (𝐴𝑚 𝐵))
62 f1ofo 6057 . . . . . . . . . . . . . . . 16 (𝑓:𝐵1-1-onto𝑥𝑓:𝐵onto𝑥)
63 forn 6031 . . . . . . . . . . . . . . . 16 (𝑓:𝐵onto𝑥 → ran 𝑓 = 𝑥)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝑥 → ran 𝑓 = 𝑥)
6564adantl 481 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → ran 𝑓 = 𝑥)
6665eqcomd 2616 . . . . . . . . . . . . 13 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑥 = ran 𝑓)
6761, 66jca 553 . . . . . . . . . . . 12 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → (𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓))
6867ex 449 . . . . . . . . . . 11 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → (𝑓:𝐵1-1-onto𝑥 → (𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓)))
6968eximdv 1833 . . . . . . . . . 10 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → (∃𝑓 𝑓:𝐵1-1-onto𝑥 → ∃𝑓(𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓)))
7054, 69mpd 15 . . . . . . . . 9 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓(𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓))
71 df-rex 2902 . . . . . . . . 9 (∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓 ↔ ∃𝑓(𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓))
7270, 71sylibr 223 . . . . . . . 8 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓)
7372ex 449 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ((𝑥𝐴𝑥𝐵) → ∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓))
7473ss2abdv 3638 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ {𝑥 ∣ ∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓})
75 eqid 2610 . . . . . . 7 (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) = (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓)
7675rnmpt 5292 . . . . . 6 ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) = {𝑥 ∣ ∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓}
7774, 76syl6sseqr 3615 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓))
78 ssdomg 7887 . . . . 5 (ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ∈ V → ({𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓)))
7950, 77, 78mpsyl 66 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓))
80 vex 3176 . . . . . . . . 9 𝑓 ∈ V
8180rnex 6992 . . . . . . . 8 ran 𝑓 ∈ V
8281rgenw 2908 . . . . . . 7 𝑓 ∈ (𝐴𝑚 𝐵)ran 𝑓 ∈ V
8375fnmpt 5933 . . . . . . 7 (∀𝑓 ∈ (𝐴𝑚 𝐵)ran 𝑓 ∈ V → (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) Fn (𝐴𝑚 𝐵))
8482, 83mp1i 13 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) Fn (𝐴𝑚 𝐵))
85 dffn4 6034 . . . . . 6 ((𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) Fn (𝐴𝑚 𝐵) ↔ (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓):(𝐴𝑚 𝐵)–onto→ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓))
8684, 85sylib 207 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓):(𝐴𝑚 𝐵)–onto→ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓))
87 fodomnum 8763 . . . . 5 ((𝐴𝑚 𝐵) ∈ dom card → ((𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓):(𝐴𝑚 𝐵)–onto→ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) → ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ≼ (𝐴𝑚 𝐵)))
8814, 86, 87sylc 63 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ≼ (𝐴𝑚 𝐵))
89 domtr 7895 . . . 4 (({𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ∧ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ≼ (𝐴𝑚 𝐵)) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴𝑚 𝐵))
9079, 88, 89syl2anc 691 . . 3 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴𝑚 𝐵))
91 sbth 7965 . . 3 (((𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ∧ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴𝑚 𝐵)) → (𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
9247, 90, 91syl2anc 691 . 2 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
937brrelex2i 5083 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
94933ad2ant1 1075 . . . 4 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → 𝐴 ∈ V)
95 map0e 7781 . . . 4 (𝐴 ∈ V → (𝐴𝑚 ∅) = 1𝑜)
9694, 95syl 17 . . 3 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → (𝐴𝑚 ∅) = 1𝑜)
97 1onn 7606 . . . . . 6 1𝑜 ∈ ω
9897elexi 3186 . . . . 5 1𝑜 ∈ V
9998enref 7874 . . . 4 1𝑜 ≈ 1𝑜
100 df-sn 4126 . . . . 5 {∅} = {𝑥𝑥 = ∅}
101 df1o2 7459 . . . . 5 1𝑜 = {∅}
102 en0 7905 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
103102anbi2i 726 . . . . . . 7 ((𝑥𝐴𝑥 ≈ ∅) ↔ (𝑥𝐴𝑥 = ∅))
104 0ss 3924 . . . . . . . . 9 ∅ ⊆ 𝐴
105 sseq1 3589 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
106104, 105mpbiri 247 . . . . . . . 8 (𝑥 = ∅ → 𝑥𝐴)
107106pm4.71ri 663 . . . . . . 7 (𝑥 = ∅ ↔ (𝑥𝐴𝑥 = ∅))
108103, 107bitr4i 266 . . . . . 6 ((𝑥𝐴𝑥 ≈ ∅) ↔ 𝑥 = ∅)
109108abbii 2726 . . . . 5 {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)} = {𝑥𝑥 = ∅}
110100, 101, 1093eqtr4ri 2643 . . . 4 {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)} = 1𝑜
11199, 110breqtrri 4610 . . 3 1𝑜 ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)}
11296, 111syl6eqbr 4622 . 2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → (𝐴𝑚 ∅) ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)})
1135, 92, 112pm2.61ne 2867 1 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → (𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  Fun wfun 5798   Fn wfn 5799  wf 5800  ontowfo 5802  1-1-ontowf1o 5803  (class class class)co 6549  ωcom 6957  1𝑜c1o 7440  𝑚 cmap 7744  cen 7838  cdom 7839  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-acn 8651
This theorem is referenced by:  infmap  9277
  Copyright terms: Public domain W3C validator