Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 5973
 Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 5963 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 5573 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 5964 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 3620 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 5966 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5148 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 691 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3578 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ⊆ wss 3540   × cxp 5036  dom cdm 5038  ran crn 5039  Rel wrel 5043  ⟶wf 5800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808 This theorem is referenced by:  funssxp  5974  opelf  5978  dff2  6279  dff3  6280  fndifnfp  6347  fex2  7014  fabexg  7015  f2ndf  7170  f1o2ndf1  7172  mapex  7750  uniixp  7817  hartogslem1  8330  wdom2d  8368  rankfu  8623  dfac12lem2  8849  infmap2  8923  axdc3lem  9155  tskcard  9482  dfle2  11856  ixxex  12057  imasvscafn  16020  imasvscaf  16022  fnmrc  16090  mrcfval  16091  isacs1i  16141  mreacs  16142  pjfval  19869  pjpm  19871  hausdiag  21258  isngp2  22211  volf  23104  fnct  28876  fgraphopab  36807  issmflem  39613
 Copyright terms: Public domain W3C validator