MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap2 Structured version   Unicode version

Theorem infmap2 8615
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 8968 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap2  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  B )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  B ) } )
Distinct variable groups:    x, A    x, B

Proof of Theorem infmap2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 oveq2 6304 . . 3  |-  ( B  =  (/)  ->  ( A  ^m  B )  =  ( A  ^m  (/) ) )
2 breq2 4460 . . . . 5  |-  ( B  =  (/)  ->  ( x 
~~  B  <->  x  ~~  (/) ) )
32anbi2d 703 . . . 4  |-  ( B  =  (/)  ->  ( ( x  C_  A  /\  x  ~~  B )  <->  ( x  C_  A  /\  x  ~~  (/) ) ) )
43abbidv 2593 . . 3  |-  ( B  =  (/)  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  =  {
x  |  ( x 
C_  A  /\  x  ~~  (/) ) } )
51, 4breq12d 4469 . 2  |-  ( B  =  (/)  ->  ( ( A  ^m  B ) 
~~  { x  |  ( x  C_  A  /\  x  ~~  B ) }  <->  ( A  ^m  (/) )  ~~  { x  |  ( x  C_  A  /\  x  ~~  (/) ) } ) )
6 simpl2 1000 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  B  ~<_  A )
7 reldom 7541 . . . . . . . . . . 11  |-  Rel  ~<_
87brrelexi 5049 . . . . . . . . . 10  |-  ( B  ~<_  A  ->  B  e.  _V )
96, 8syl 16 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  B  e.  _V )
107brrelex2i 5050 . . . . . . . . . 10  |-  ( B  ~<_  A  ->  A  e.  _V )
116, 10syl 16 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  A  e.  _V )
12 xpcomeng 7628 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B  X.  A
)  ~~  ( A  X.  B ) )
139, 11, 12syl2anc 661 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( B  X.  A )  ~~  ( A  X.  B
) )
14 simpl3 1001 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  ^m  B )  e. 
dom  card )
15 simpr 461 . . . . . . . . . . 11  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  B  =/=  (/) )
16 mapdom3 7708 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  B  =/=  (/) )  ->  A  ~<_  ( A  ^m  B ) )
1711, 9, 15, 16syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  A  ~<_  ( A  ^m  B ) )
18 numdom 8436 . . . . . . . . . 10  |-  ( ( ( A  ^m  B
)  e.  dom  card  /\  A  ~<_  ( A  ^m  B ) )  ->  A  e.  dom  card )
1914, 17, 18syl2anc 661 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  A  e.  dom  card )
20 simpl1 999 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  om  ~<_  A )
21 infxpabs 8609 . . . . . . . . 9  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  A )
2219, 20, 15, 6, 21syl22anc 1229 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  X.  B )  ~~  A )
23 entr 7586 . . . . . . . 8  |-  ( ( ( B  X.  A
)  ~~  ( A  X.  B )  /\  ( A  X.  B )  ~~  A )  ->  ( B  X.  A )  ~~  A )
2413, 22, 23syl2anc 661 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( B  X.  A )  ~~  A )
25 ssenen 7710 . . . . . . 7  |-  ( ( B  X.  A ) 
~~  A  ->  { x  |  ( x  C_  ( B  X.  A
)  /\  x  ~~  B ) }  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
2624, 25syl 16 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  ( B  X.  A
)  /\  x  ~~  B ) }  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
27 relen 7540 . . . . . . 7  |-  Rel  ~~
2827brrelexi 5049 . . . . . 6  |-  ( { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) }  ->  { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }  e.  _V )
2926, 28syl 16 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  ( B  X.  A
)  /\  x  ~~  B ) }  e.  _V )
30 abid2 2597 . . . . . 6  |-  { x  |  x  e.  ( A  ^m  B ) }  =  ( A  ^m  B )
31 elmapi 7459 . . . . . . . 8  |-  ( x  e.  ( A  ^m  B )  ->  x : B --> A )
32 fssxp 5749 . . . . . . . . 9  |-  ( x : B --> A  ->  x  C_  ( B  X.  A ) )
33 ffun 5739 . . . . . . . . . . 11  |-  ( x : B --> A  ->  Fun  x )
34 vex 3112 . . . . . . . . . . . 12  |-  x  e. 
_V
3534fundmen 7608 . . . . . . . . . . 11  |-  ( Fun  x  ->  dom  x  ~~  x )
36 ensym 7583 . . . . . . . . . . 11  |-  ( dom  x  ~~  x  ->  x  ~~  dom  x )
3733, 35, 363syl 20 . . . . . . . . . 10  |-  ( x : B --> A  ->  x  ~~  dom  x )
38 fdm 5741 . . . . . . . . . 10  |-  ( x : B --> A  ->  dom  x  =  B )
3937, 38breqtrd 4480 . . . . . . . . 9  |-  ( x : B --> A  ->  x  ~~  B )
4032, 39jca 532 . . . . . . . 8  |-  ( x : B --> A  -> 
( x  C_  ( B  X.  A )  /\  x  ~~  B ) )
4131, 40syl 16 . . . . . . 7  |-  ( x  e.  ( A  ^m  B )  ->  (
x  C_  ( B  X.  A )  /\  x  ~~  B ) )
4241ss2abi 3568 . . . . . 6  |-  { x  |  x  e.  ( A  ^m  B ) } 
C_  { x  |  ( x  C_  ( B  X.  A )  /\  x  ~~  B ) }
4330, 42eqsstr3i 3530 . . . . 5  |-  ( A  ^m  B )  C_  { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }
44 ssdomg 7580 . . . . 5  |-  ( { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }  e.  _V  ->  ( ( A  ^m  B )  C_  { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }  ->  ( A  ^m  B )  ~<_  { x  |  ( x  C_  ( B  X.  A )  /\  x  ~~  B ) } ) )
4529, 43, 44mpisyl 18 . . . 4  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  ^m  B )  ~<_  { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) } )
46 domentr 7593 . . . 4  |-  ( ( ( A  ^m  B
)  ~<_  { x  |  ( x  C_  ( B  X.  A )  /\  x  ~~  B ) }  /\  { x  |  ( x  C_  ( B  X.  A )  /\  x  ~~  B ) } 
~~  { x  |  ( x  C_  A  /\  x  ~~  B ) } )  ->  ( A  ^m  B )  ~<_  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
4745, 26, 46syl2anc 661 . . 3  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  ^m  B )  ~<_  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
48 ovex 6324 . . . . . . 7  |-  ( A  ^m  B )  e. 
_V
4948mptex 6144 . . . . . 6  |-  ( f  e.  ( A  ^m  B )  |->  ran  f
)  e.  _V
5049rnex 6733 . . . . 5  |-  ran  (
f  e.  ( A  ^m  B )  |->  ran  f )  e.  _V
51 ensym 7583 . . . . . . . . . . . 12  |-  ( x 
~~  B  ->  B  ~~  x )
5251ad2antll 728 . . . . . . . . . . 11  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  B  ~~  x
)
53 bren 7544 . . . . . . . . . . 11  |-  ( B 
~~  x  <->  E. f 
f : B -1-1-onto-> x )
5452, 53sylib 196 . . . . . . . . . 10  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  E. f  f : B -1-1-onto-> x )
55 f1of 5822 . . . . . . . . . . . . . . . 16  |-  ( f : B -1-1-onto-> x  ->  f : B --> x )
5655adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  f : B
--> x )
57 simplrl 761 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  x  C_  A
)
5856, 57fssd 5746 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  f : B
--> A )
5911, 9elmapd 7452 . . . . . . . . . . . . . . 15  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  (
f  e.  ( A  ^m  B )  <->  f : B
--> A ) )
6059ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  ( f  e.  ( A  ^m  B
)  <->  f : B --> A ) )
6158, 60mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  f  e.  ( A  ^m  B ) )
62 f1ofo 5829 . . . . . . . . . . . . . . . 16  |-  ( f : B -1-1-onto-> x  ->  f : B -onto-> x )
63 forn 5804 . . . . . . . . . . . . . . . 16  |-  ( f : B -onto-> x  ->  ran  f  =  x
)
6462, 63syl 16 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> x  ->  ran  f  =  x )
6564adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  ran  f  =  x )
6665eqcomd 2465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  x  =  ran  f )
6761, 66jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  ( f  e.  ( A  ^m  B
)  /\  x  =  ran  f ) )
6867ex 434 . . . . . . . . . . 11  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  ( f : B -1-1-onto-> x  ->  ( f  e.  ( A  ^m  B )  /\  x  =  ran  f ) ) )
6968eximdv 1711 . . . . . . . . . 10  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  ( E. f 
f : B -1-1-onto-> x  ->  E. f ( f  e.  ( A  ^m  B
)  /\  x  =  ran  f ) ) )
7054, 69mpd 15 . . . . . . . . 9  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  E. f ( f  e.  ( A  ^m  B )  /\  x  =  ran  f ) )
71 df-rex 2813 . . . . . . . . 9  |-  ( E. f  e.  ( A  ^m  B ) x  =  ran  f  <->  E. f
( f  e.  ( A  ^m  B )  /\  x  =  ran  f ) )
7270, 71sylibr 212 . . . . . . . 8  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  E. f  e.  ( A  ^m  B ) x  =  ran  f
)
7372ex 434 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  (
( x  C_  A  /\  x  ~~  B )  ->  E. f  e.  ( A  ^m  B ) x  =  ran  f
) )
7473ss2abdv 3569 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  C_  { x  |  E. f  e.  ( A  ^m  B ) x  =  ran  f } )
75 eqid 2457 . . . . . . 7  |-  ( f  e.  ( A  ^m  B )  |->  ran  f
)  =  ( f  e.  ( A  ^m  B )  |->  ran  f
)
7675rnmpt 5258 . . . . . 6  |-  ran  (
f  e.  ( A  ^m  B )  |->  ran  f )  =  {
x  |  E. f  e.  ( A  ^m  B
) x  =  ran  f }
7774, 76syl6sseqr 3546 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  C_  ran  ( f  e.  ( A  ^m  B ) 
|->  ran  f ) )
78 ssdomg 7580 . . . . 5  |-  ( ran  ( f  e.  ( A  ^m  B ) 
|->  ran  f )  e. 
_V  ->  ( { x  |  ( x  C_  A  /\  x  ~~  B
) }  C_  ran  ( f  e.  ( A  ^m  B ) 
|->  ran  f )  ->  { x  |  (
x  C_  A  /\  x  ~~  B ) }  ~<_  ran  ( f  e.  ( A  ^m  B
)  |->  ran  f )
) )
7950, 77, 78mpsyl 63 . . . 4  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ran  (
f  e.  ( A  ^m  B )  |->  ran  f ) )
80 vex 3112 . . . . . . . . 9  |-  f  e. 
_V
8180rnex 6733 . . . . . . . 8  |-  ran  f  e.  _V
8281rgenw 2818 . . . . . . 7  |-  A. f  e.  ( A  ^m  B
) ran  f  e.  _V
8375fnmpt 5713 . . . . . . 7  |-  ( A. f  e.  ( A  ^m  B ) ran  f  e.  _V  ->  ( f  e.  ( A  ^m  B
)  |->  ran  f )  Fn  ( A  ^m  B
) )
8482, 83mp1i 12 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  (
f  e.  ( A  ^m  B )  |->  ran  f )  Fn  ( A  ^m  B ) )
85 dffn4 5807 . . . . . 6  |-  ( ( f  e.  ( A  ^m  B )  |->  ran  f )  Fn  ( A  ^m  B )  <->  ( f  e.  ( A  ^m  B
)  |->  ran  f ) : ( A  ^m  B ) -onto-> ran  (
f  e.  ( A  ^m  B )  |->  ran  f ) )
8684, 85sylib 196 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  (
f  e.  ( A  ^m  B )  |->  ran  f ) : ( A  ^m  B )
-onto->
ran  ( f  e.  ( A  ^m  B
)  |->  ran  f )
)
87 fodomnum 8455 . . . . 5  |-  ( ( A  ^m  B )  e.  dom  card  ->  ( ( f  e.  ( A  ^m  B ) 
|->  ran  f ) : ( A  ^m  B
) -onto-> ran  ( f  e.  ( A  ^m  B
)  |->  ran  f )  ->  ran  ( f  e.  ( A  ^m  B
)  |->  ran  f )  ~<_  ( A  ^m  B ) ) )
8814, 86, 87sylc 60 . . . 4  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ran  ( f  e.  ( A  ^m  B ) 
|->  ran  f )  ~<_  ( A  ^m  B ) )
89 domtr 7587 . . . 4  |-  ( ( { x  |  ( x  C_  A  /\  x  ~~  B ) }  ~<_  ran  ( f  e.  ( A  ^m  B
)  |->  ran  f )  /\  ran  ( f  e.  ( A  ^m  B
)  |->  ran  f )  ~<_  ( A  ^m  B ) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ( A  ^m  B ) )
9079, 88, 89syl2anc 661 . . 3  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ( A  ^m  B ) )
91 sbth 7656 . . 3  |-  ( ( ( A  ^m  B
)  ~<_  { x  |  ( x  C_  A  /\  x  ~~  B ) }  /\  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ( A  ^m  B ) )  ->  ( A  ^m  B )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  B ) } )
9247, 90, 91syl2anc 661 . 2  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  ^m  B )  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
937brrelex2i 5050 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  _V )
94933ad2ant1 1017 . . . 4  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  A  e.  _V )
95 map0e 7475 . . . 4  |-  ( A  e.  _V  ->  ( A  ^m  (/) )  =  1o )
9694, 95syl 16 . . 3  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  (/) )  =  1o )
97 1onn 7306 . . . . . 6  |-  1o  e.  om
9897elexi 3119 . . . . 5  |-  1o  e.  _V
9998enref 7567 . . . 4  |-  1o  ~~  1o
100 df-sn 4033 . . . . 5  |-  { (/) }  =  { x  |  x  =  (/) }
101 df1o2 7160 . . . . 5  |-  1o  =  { (/) }
102 en0 7597 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
103102anbi2i 694 . . . . . . 7  |-  ( ( x  C_  A  /\  x  ~~  (/) )  <->  ( x  C_  A  /\  x  =  (/) ) )
104 0ss 3823 . . . . . . . . 9  |-  (/)  C_  A
105 sseq1 3520 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( x 
C_  A  <->  (/)  C_  A
) )
106104, 105mpbiri 233 . . . . . . . 8  |-  ( x  =  (/)  ->  x  C_  A )
107106pm4.71ri 633 . . . . . . 7  |-  ( x  =  (/)  <->  ( x  C_  A  /\  x  =  (/) ) )
108103, 107bitr4i 252 . . . . . 6  |-  ( ( x  C_  A  /\  x  ~~  (/) )  <->  x  =  (/) )
109108abbii 2591 . . . . 5  |-  { x  |  ( x  C_  A  /\  x  ~~  (/) ) }  =  { x  |  x  =  (/) }
110100, 101, 1093eqtr4ri 2497 . . . 4  |-  { x  |  ( x  C_  A  /\  x  ~~  (/) ) }  =  1o
11199, 110breqtrri 4481 . . 3  |-  1o  ~~  { x  |  ( x 
C_  A  /\  x  ~~  (/) ) }
11296, 111syl6eqbr 4493 . 2  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  (/) )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  (/) ) } )
1135, 92, 112pm2.61ne 2772 1  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  B )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  B ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   E.wrex 2808   _Vcvv 3109    C_ wss 3471   (/)c0 3793   {csn 4032   class class class wbr 4456    |-> cmpt 4515    X. cxp 5006   dom cdm 5008   ran crn 5009   Fun wfun 5588    Fn wfn 5589   -->wf 5590   -onto->wfo 5592   -1-1-onto->wf1o 5593  (class class class)co 6296   omcom 6699   1oc1o 7141    ^m cmap 7438    ~~ cen 7532    ~<_ cdom 7533   cardccrd 8333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-oi 7953  df-card 8337  df-acn 8340
This theorem is referenced by:  infmap  8968
  Copyright terms: Public domain W3C validator