Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpss Structured version   Visualization version   GIF version

Theorem infpss 8922
 Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 9018. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infpss (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem infpss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infn0 8107 . . 3 (ω ≼ 𝐴𝐴 ≠ ∅)
2 n0 3890 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
31, 2sylib 207 . 2 (ω ≼ 𝐴 → ∃𝑦 𝑦𝐴)
4 reldom 7847 . . . . . 6 Rel ≼
54brrelex2i 5083 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
6 difexg 4735 . . . . 5 (𝐴 ∈ V → (𝐴 ∖ {𝑦}) ∈ V)
75, 6syl 17 . . . 4 (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ∈ V)
87adantr 480 . . 3 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ∈ V)
9 simpr 476 . . . . 5 ((ω ≼ 𝐴𝑦𝐴) → 𝑦𝐴)
10 difsnpss 4279 . . . . 5 (𝑦𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴)
119, 10sylib 207 . . . 4 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
12 infdifsn 8437 . . . . 5 (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ≈ 𝐴)
1312adantr 480 . . . 4 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ≈ 𝐴)
1411, 13jca 553 . . 3 ((ω ≼ 𝐴𝑦𝐴) → ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴))
15 psseq1 3656 . . . . 5 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴))
16 breq1 4586 . . . . 5 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥𝐴 ↔ (𝐴 ∖ {𝑦}) ≈ 𝐴))
1715, 16anbi12d 743 . . . 4 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥𝐴𝑥𝐴) ↔ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴)))
1817spcegv 3267 . . 3 ((𝐴 ∖ {𝑦}) ∈ V → (((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴)))
198, 14, 18sylc 63 . 2 ((ω ≼ 𝐴𝑦𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴))
203, 19exlimddv 1850 1 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ∖ cdif 3537   ⊊ wpss 3541  ∅c0 3874  {csn 4125   class class class wbr 4583  ωcom 6957   ≈ cen 7838   ≼ cdom 7839 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845 This theorem is referenced by:  isfin4-2  9019
 Copyright terms: Public domain W3C validator