Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbsngVD Structured version   Visualization version   GIF version

Theorem csbsngVD 38151
Description: Virtual deduction proof of csbsng 4190. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4190 is csbsngVD 38151 without virtual deductions and was automatically derived from csbsngVD 38151.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝑦 = 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
8:1: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
9:7,8: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
10:: {𝐵} = {𝑦𝑦 = 𝐵}
11:10: 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
12:1,11: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
13:9,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
14:: {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
15:13,14: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
qed:15: (𝐴𝑉𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbsngVD (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

Proof of Theorem csbsngVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 37811 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbceqg 3936 . . . . . . . . 9 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵))
31, 2e1a 37873 . . . . . . . 8 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
4 csbconstg 3512 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
51, 4e1a 37873 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
6 eqeq1 2614 . . . . . . . . 9 (𝐴 / 𝑥𝑦 = 𝑦 → (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵))
75, 6e1a 37873 . . . . . . . 8 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
8 bibi1 340 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) ↔ (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)))
98biimprd 237 . . . . . . . 8 (([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)))
103, 7, 9e11 37934 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
1110gen11 37862 . . . . . 6 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
12 abbi 2724 . . . . . . 7 (∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) ↔ {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
1312biimpi 205 . . . . . 6 (∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
1411, 13e1a 37873 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
15 csbabgOLD 38072 . . . . . . 7 (𝐴𝑉𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵})
1615eqcomd 2616 . . . . . 6 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵})
171, 16e1a 37873 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
18 eqeq1 2614 . . . . . 6 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} ↔ 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
1918biimpcd 238 . . . . 5 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2014, 17, 19e11 37934 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
21 df-sn 4126 . . . . . 6 {𝐵} = {𝑦𝑦 = 𝐵}
2221ax-gen 1713 . . . . 5 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
23 csbeq2gOLD 37786 . . . . 5 (𝐴𝑉 → (∀𝑥{𝐵} = {𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}))
241, 22, 23e10 37940 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
25 eqeq2 2621 . . . . 5 (𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} ↔ 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2625biimpd 218 . . . 4 (𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2720, 24, 26e11 37934 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
28 df-sn 4126 . . 3 {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
29 eqeq2 2621 . . . 4 ({𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵} ↔ 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
3029biimprcd 239 . . 3 (𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → ({𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → 𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}))
3127, 28, 30e10 37940 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}   )
3231in1 37808 1 (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473   = wceq 1475  wcel 1977  {cab 2596  [wsbc 3402  csb 3499  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sbc 3403  df-csb 3500  df-sn 4126  df-vd1 37807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator