![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiota2 | Structured version Visualization version GIF version |
Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
dfiota2 | ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota 5768 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
2 | df-sn 4126 | . . . . . 6 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
3 | 2 | eqeq2i 2622 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) |
4 | abbi 2724 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
5 | 3, 4 | bitr4i 266 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
6 | 5 | abbii 2726 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
7 | 6 | unieqi 4381 | . 2 ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
8 | 1, 7 | eqtri 2632 | 1 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∀wal 1473 = wceq 1475 {cab 2596 {csn 4125 ∪ cuni 4372 ℩cio 5766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-sn 4126 df-uni 4373 df-iota 5768 |
This theorem is referenced by: nfiota1 5770 nfiotad 5771 cbviota 5773 sb8iota 5775 iotaval 5779 iotanul 5783 fv2 6098 |
Copyright terms: Public domain | W3C validator |