MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem5 Structured version   Visualization version   GIF version

Theorem ftalem5 24603
Description: Lemma for fta 24606: Main proof. We have already shifted the minimum found in ftalem3 24601 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let 𝐾 be the lowest term in the polynomial that is nonzero, and let 𝑇 be a 𝐾-th root of -𝐹(0) / 𝐴(𝐾). Then an evaluation of 𝐹(𝑇𝑋) where 𝑋 is a sufficiently small positive number yields 𝐹(0) for the first term and -𝐹(0) · 𝑋𝐾 for the 𝐾-th term, and all higher terms are bounded because 𝑋 is small. Thus, abs(𝐹(𝑇𝑋)) ≤ abs(𝐹(0))(1 − 𝑋𝐾) < abs(𝐹(0)), in contradiction to our choice of 𝐹(0) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem4.5 (𝜑 → (𝐹‘0) ≠ 0)
ftalem4.6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
ftalem4.7 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
ftalem4.8 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
ftalem4.9 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
Assertion
Ref Expression
ftalem5 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Distinct variable groups:   𝑘,𝑛,𝑥,𝐴   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛,𝑥   𝑘,𝐹,𝑛,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑥   𝑥,𝑈   𝑘,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑥,𝑛)   𝑇(𝑛)   𝑈(𝑘,𝑛)   𝐾(𝑥)

Proof of Theorem ftalem5
StepHypRef Expression
1 ftalem.1 . . . . . 6 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . . . . 6 𝑁 = (deg‘𝐹)
3 ftalem.3 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . . . . 6 (𝜑𝑁 ∈ ℕ)
5 ftalem4.5 . . . . . 6 (𝜑 → (𝐹‘0) ≠ 0)
6 ftalem4.6 . . . . . 6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
7 ftalem4.7 . . . . . 6 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
8 ftalem4.8 . . . . . 6 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
9 ftalem4.9 . . . . . 6 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
101, 2, 3, 4, 5, 6, 7, 8, 9ftalem4 24602 . . . . 5 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
1110simprd 478 . . . 4 (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+))
1211simp1d 1066 . . 3 (𝜑𝑇 ∈ ℂ)
1311simp3d 1068 . . . . 5 (𝜑𝑋 ∈ ℝ+)
1413rpred 11748 . . . 4 (𝜑𝑋 ∈ ℝ)
1514recnd 9947 . . 3 (𝜑𝑋 ∈ ℂ)
1612, 15mulcld 9939 . 2 (𝜑 → (𝑇 · 𝑋) ∈ ℂ)
17 plyf 23758 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
183, 17syl 17 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1918, 16ffvelrnd 6268 . . . 4 (𝜑 → (𝐹‘(𝑇 · 𝑋)) ∈ ℂ)
2019abscld 14023 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ∈ ℝ)
21 0cn 9911 . . . . . . 7 0 ∈ ℂ
22 ffvelrn 6265 . . . . . . 7 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
2318, 21, 22sylancl 693 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℂ)
2423abscld 14023 . . . . 5 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
2510simpld 474 . . . . . . . . 9 (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
2625simpld 474 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
2726nnnn0d 11228 . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
2814, 27reexpcld 12887 . . . . . 6 (𝜑 → (𝑋𝐾) ∈ ℝ)
2924, 28remulcld 9949 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) · (𝑋𝐾)) ∈ ℝ)
3024, 29resubcld 10337 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) ∈ ℝ)
31 fzfid 12634 . . . . . 6 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
32 peano2nn0 11210 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3327, 32syl 17 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℕ0)
34 elfzuz 12209 . . . . . . . . 9 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
35 eluznn0 11633 . . . . . . . . 9 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ0)
3633, 34, 35syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0)
371coef3 23792 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
383, 37syl 17 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
39 ffvelrn 6265 . . . . . . . . 9 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4038, 39sylan 487 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4136, 40syldan 486 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴𝑘) ∈ ℂ)
4216adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇 · 𝑋) ∈ ℂ)
4342, 36expcld 12870 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
4441, 43mulcld 9939 . . . . . 6 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4531, 44fsumcl 14311 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4645abscld 14023 . . . 4 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
4730, 46readdcld 9948 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ∈ ℝ)
48 fzfid 12634 . . . . . 6 (𝜑 → (0...𝐾) ∈ Fin)
49 elfznn0 12302 . . . . . . . 8 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
5038, 49, 39syl2an 493 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → (𝐴𝑘) ∈ ℂ)
51 expcl 12740 . . . . . . . 8 (((𝑇 · 𝑋) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5216, 49, 51syl2an 493 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5350, 52mulcld 9939 . . . . . 6 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5448, 53fsumcl 14311 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5554, 45abstrid 14043 . . . 4 (𝜑 → (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ≤ ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
561, 2coeid2 23799 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑇 · 𝑋) ∈ ℂ) → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
573, 16, 56syl2anc 691 . . . . . 6 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
5826nnred 10912 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5958ltp1d 10833 . . . . . . . 8 (𝜑𝐾 < (𝐾 + 1))
60 fzdisj 12239 . . . . . . . 8 (𝐾 < (𝐾 + 1) → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
6159, 60syl 17 . . . . . . 7 (𝜑 → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
62 ssrab2 3650 . . . . . . . . . . . 12 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℕ
63 nnuz 11599 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6462, 63sseqtri 3600 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1)
654nnne0d 10942 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
662, 1dgreq0 23825 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
673, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
68 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
69 dgr0 23822 . . . . . . . . . . . . . . . . 17 (deg‘0𝑝) = 0
7068, 69syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
712, 70syl5eq 2656 . . . . . . . . . . . . . . 15 (𝐹 = 0𝑝𝑁 = 0)
7267, 71syl6bir 243 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
7372necon3d 2803 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
7465, 73mpd 15 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ≠ 0)
75 fveq2 6103 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
7675neeq1d 2841 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑁) ≠ 0))
7776elrab 3331 . . . . . . . . . . . 12 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝑁 ∈ ℕ ∧ (𝐴𝑁) ≠ 0))
784, 74, 77sylanbrc 695 . . . . . . . . . . 11 (𝜑𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
79 infssuzle 11647 . . . . . . . . . . 11 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
8064, 78, 79sylancr 694 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
816, 80syl5eqbr 4618 . . . . . . . . 9 (𝜑𝐾𝑁)
82 nn0uz 11598 . . . . . . . . . . 11 0 = (ℤ‘0)
8327, 82syl6eleq 2698 . . . . . . . . . 10 (𝜑𝐾 ∈ (ℤ‘0))
844nnzd 11357 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
85 elfz5 12205 . . . . . . . . . 10 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8683, 84, 85syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8781, 86mpbird 246 . . . . . . . 8 (𝜑𝐾 ∈ (0...𝑁))
88 fzsplit 12238 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
8987, 88syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
90 fzfid 12634 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
91 elfznn0 12302 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9238, 91, 39syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9316, 91, 51syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
9492, 93mulcld 9939 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
9561, 89, 90, 94fsumsplit 14318 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9657, 95eqtrd 2644 . . . . 5 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9796fveq2d 6107 . . . 4 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) = (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
981coefv0 23808 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
993, 98syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) = (𝐴‘0))
10099eqcomd 2616 . . . . . . . . . . 11 (𝜑 → (𝐴‘0) = (𝐹‘0))
10116exp0d 12864 . . . . . . . . . . 11 (𝜑 → ((𝑇 · 𝑋)↑0) = 1)
102100, 101oveq12d 6567 . . . . . . . . . 10 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = ((𝐹‘0) · 1))
10323mulid1d 9936 . . . . . . . . . 10 (𝜑 → ((𝐹‘0) · 1) = (𝐹‘0))
104102, 103eqtrd 2644 . . . . . . . . 9 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = (𝐹‘0))
105 1e0p1 11428 . . . . . . . . . . . . 13 1 = (0 + 1)
106105oveq1i 6559 . . . . . . . . . . . 12 (1...𝐾) = ((0 + 1)...𝐾)
107106sumeq1i 14276 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))
10826, 63syl6eleq 2698 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘1))
109 elfznn 12241 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ)
110109nnnn0d 11228 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ0)
11138, 110, 39syl2an 493 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → (𝐴𝑘) ∈ ℂ)
11216, 110, 51syl2an 493 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
113111, 112mulcld 9939 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
114 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (𝐴𝑘) = (𝐴𝐾))
115 oveq2 6557 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑𝐾))
116114, 115oveq12d 6567 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)))
117108, 113, 116fsumm1 14324 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
118107, 117syl5eqr 2658 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
119 elfznn 12241 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ)
120119adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℕ)
121120nnred 10912 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℝ)
12258adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℝ)
123 peano2rem 10227 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
124122, 123syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
125 elfzle2 12216 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
126125adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
127122ltm1d 10835 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) < 𝐾)
128121, 124, 122, 126, 127lelttrd 10074 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 < 𝐾)
129121, 122ltnled 10063 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 < 𝐾 ↔ ¬ 𝐾𝑘))
130128, 129mpbid 221 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝐾𝑘)
131 infssuzle 11647 . . . . . . . . . . . . . . . . . . 19 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑘)
1326, 131syl5eqbr 4618 . . . . . . . . . . . . . . . . . 18 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → 𝐾𝑘)
13364, 132mpan 702 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → 𝐾𝑘)
134130, 133nsyl 134 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
135 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
136135neeq1d 2841 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
137136elrab3 3332 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
138120, 137syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
139138necon2bbid 2825 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) = 0 ↔ ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}))
140134, 139mpbird 246 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐴𝑘) = 0)
141140oveq1d 6564 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (0 · ((𝑇 · 𝑋)↑𝑘)))
142119nnnn0d 11228 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
14316, 142, 51syl2an 493 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
144143mul02d 10113 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (0 · ((𝑇 · 𝑋)↑𝑘)) = 0)
145141, 144eqtrd 2644 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
146145sumeq2dv 14281 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ (1...(𝐾 − 1))0)
147 fzfi 12633 . . . . . . . . . . . . . 14 (1...(𝐾 − 1)) ∈ Fin
148147olci 405 . . . . . . . . . . . . 13 ((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin)
149 sumz 14300 . . . . . . . . . . . . 13 (((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin) → Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0)
150148, 149ax-mp 5 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0
151146, 150syl6eq 2660 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
15212, 15, 27mulexpd 12885 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 · 𝑋)↑𝐾) = ((𝑇𝐾) · (𝑋𝐾)))
153152oveq2d 6565 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
15438, 27ffvelrnd 6268 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐾) ∈ ℂ)
15512, 27expcld 12870 . . . . . . . . . . . . . 14 (𝜑 → (𝑇𝐾) ∈ ℂ)
15628recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝐾) ∈ ℂ)
157154, 155, 156mulassd 9942 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
158153, 157eqtr4d 2647 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)))
1597oveq1i 6559 . . . . . . . . . . . . . . . 16 (𝑇𝐾) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾)
16058recnd 9947 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℂ)
16126nnne0d 10942 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≠ 0)
162160, 161recid2d 10676 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 / 𝐾) · 𝐾) = 1)
163162oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = (-((𝐹‘0) / (𝐴𝐾))↑𝑐1))
16425simprd 478 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴𝐾) ≠ 0)
16523, 154, 164divcld 10680 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
166165negcld 10258 . . . . . . . . . . . . . . . . . 18 (𝜑 → -((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
16726nnrecred 10943 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 / 𝐾) ∈ ℝ)
168167recnd 9947 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 / 𝐾) ∈ ℂ)
169166, 168, 27cxpmul2d 24255 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾))
170166cxp1d 24252 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐1) = -((𝐹‘0) / (𝐴𝐾)))
171163, 169, 1703eqtr3d 2652 . . . . . . . . . . . . . . . 16 (𝜑 → ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾) = -((𝐹‘0) / (𝐴𝐾)))
172159, 171syl5eq 2656 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝐾) = -((𝐹‘0) / (𝐴𝐾)))
173172oveq2d 6565 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))))
174154, 165mulneg2d 10363 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))) = -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))))
17523, 154, 164divcan2d 10682 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = (𝐹‘0))
176175negeqd 10154 . . . . . . . . . . . . . 14 (𝜑 → -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = -(𝐹‘0))
177173, 174, 1763eqtrd 2648 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = -(𝐹‘0))
178177oveq1d 6564 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = (-(𝐹‘0) · (𝑋𝐾)))
17923, 156mulneg1d 10362 . . . . . . . . . . . 12 (𝜑 → (-(𝐹‘0) · (𝑋𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
180158, 178, 1793eqtrd 2648 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
181151, 180oveq12d 6567 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))) = (0 + -((𝐹‘0) · (𝑋𝐾))))
18223, 156mulcld 9939 . . . . . . . . . . . 12 (𝜑 → ((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
183182negcld 10258 . . . . . . . . . . 11 (𝜑 → -((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
184183addid2d 10116 . . . . . . . . . 10 (𝜑 → (0 + -((𝐹‘0) · (𝑋𝐾))) = -((𝐹‘0) · (𝑋𝐾)))
185118, 181, 1843eqtrd 2648 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = -((𝐹‘0) · (𝑋𝐾)))
186104, 185oveq12d 6567 . . . . . . . 8 (𝜑 → (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
187 fveq2 6103 . . . . . . . . . 10 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
188 oveq2 6557 . . . . . . . . . 10 (𝑘 = 0 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑0))
189187, 188oveq12d 6567 . . . . . . . . 9 (𝑘 = 0 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴‘0) · ((𝑇 · 𝑋)↑0)))
19083, 53, 189fsum1p 14326 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
191103oveq1d 6564 . . . . . . . . 9 (𝜑 → (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
192 1cnd 9935 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
19323, 192, 156subdid 10365 . . . . . . . . 9 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))))
19423, 182negsubd 10277 . . . . . . . . 9 (𝜑 → ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
195191, 193, 1943eqtr4d 2654 . . . . . . . 8 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
196186, 190, 1953eqtr4d 2654 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐹‘0) · (1 − (𝑋𝐾))))
197196fveq2d 6107 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))))
198 1re 9918 . . . . . . . . 9 1 ∈ ℝ
199 resubcl 10224 . . . . . . . . 9 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (1 − (𝑋𝐾)) ∈ ℝ)
200198, 28, 199sylancr 694 . . . . . . . 8 (𝜑 → (1 − (𝑋𝐾)) ∈ ℝ)
201200recnd 9947 . . . . . . 7 (𝜑 → (1 − (𝑋𝐾)) ∈ ℂ)
20223, 201absmuld 14041 . . . . . 6 (𝜑 → (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))))
20313rpge0d 11752 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑋)
20411simp2d 1067 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℝ+)
205204rpred 11748 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
206 min1 11894 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
207198, 205, 206sylancr 694 . . . . . . . . . . . 12 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
2089, 207syl5eqbr 4618 . . . . . . . . . . 11 (𝜑𝑋 ≤ 1)
209 exple1 12782 . . . . . . . . . . 11 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ∧ 𝐾 ∈ ℕ0) → (𝑋𝐾) ≤ 1)
21014, 203, 208, 27, 209syl31anc 1321 . . . . . . . . . 10 (𝜑 → (𝑋𝐾) ≤ 1)
211 subge0 10420 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
212198, 28, 211sylancr 694 . . . . . . . . . 10 (𝜑 → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
213210, 212mpbird 246 . . . . . . . . 9 (𝜑 → 0 ≤ (1 − (𝑋𝐾)))
214200, 213absidd 14009 . . . . . . . 8 (𝜑 → (abs‘(1 − (𝑋𝐾))) = (1 − (𝑋𝐾)))
215214oveq2d 6565 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))))
21624recnd 9947 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘0)) ∈ ℂ)
217216, 192, 156subdid 10365 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))) = (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
218216mulid1d 9936 . . . . . . . 8 (𝜑 → ((abs‘(𝐹‘0)) · 1) = (abs‘(𝐹‘0)))
219218oveq1d 6564 . . . . . . 7 (𝜑 → (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
220215, 217, 2193eqtrd 2648 . . . . . 6 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
221197, 202, 2203eqtrrd 2649 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
222221oveq1d 6564 . . . 4 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) = ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22355, 97, 2223brtr4d 4615 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ≤ (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22444abscld 14023 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22531, 224fsumrecl 14312 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22631, 44fsumabs 14374 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
227 expcl 12740 . . . . . . . . . . . . 13 ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22812, 227sylan 487 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22936, 228syldan 486 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇𝑘) ∈ ℂ)
23041, 229mulcld 9939 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · (𝑇𝑘)) ∈ ℂ)
231230abscld 14023 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23231, 231fsumrecl 14312 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23314, 33reexpcld 12887 . . . . . . . 8 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℝ)
234232, 233remulcld 9949 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
235233adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋↑(𝐾 + 1)) ∈ ℝ)
236231, 235remulcld 9949 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
23712adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑇 ∈ ℂ)
23815adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℂ)
239237, 238, 36mulexpd 12885 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) = ((𝑇𝑘) · (𝑋𝑘)))
240239oveq2d 6565 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
24114adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℝ)
242241, 36reexpcld 12887 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ)
243242recnd 9947 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℂ)
24441, 229, 243mulassd 9942 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
245240, 244eqtr4d 2647 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)))
246245fveq2d 6107 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))))
247230, 243absmuld 14041 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))))
248 elfzelz 12213 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ ℤ)
249 rpexpcl 12741 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ+𝑘 ∈ ℤ) → (𝑋𝑘) ∈ ℝ+)
25013, 248, 249syl2an 493 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ+)
251250rpge0d 11752 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝑋𝑘))
252242, 251absidd 14009 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(𝑋𝑘)) = (𝑋𝑘))
253252oveq2d 6565 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
254246, 247, 2533eqtrd 2648 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
255230absge0d 14031 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴𝑘) · (𝑇𝑘))))
25633adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐾 + 1) ∈ ℕ0)
25734adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
258203adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ 𝑋)
259208adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ≤ 1)
260241, 256, 257, 258, 259leexp2rd 12904 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ≤ (𝑋↑(𝐾 + 1)))
261242, 235, 231, 255, 260lemul2ad 10843 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
262254, 261eqbrtrd 4605 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26331, 224, 236, 262fsumle 14372 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
264233recnd 9947 . . . . . . . . 9 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℂ)
265231recnd 9947 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
26631, 264, 265fsummulc1 14359 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
267263, 266breqtrrd 4611 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26815, 27expp1d 12871 . . . . . . . . . . 11 (𝜑 → (𝑋↑(𝐾 + 1)) = ((𝑋𝐾) · 𝑋))
269156, 15mulcomd 9940 . . . . . . . . . . 11 (𝜑 → ((𝑋𝐾) · 𝑋) = (𝑋 · (𝑋𝐾)))
270268, 269eqtrd 2644 . . . . . . . . . 10 (𝜑 → (𝑋↑(𝐾 + 1)) = (𝑋 · (𝑋𝐾)))
271270oveq2d 6565 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
272232recnd 9947 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
273272, 15, 156mulassd 9942 . . . . . . . . 9 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
274271, 273eqtr4d 2647 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)))
275232, 14remulcld 9949 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) ∈ ℝ)
276 nnssz 11274 . . . . . . . . . . . 12 ℕ ⊆ ℤ
27762, 276sstri 3577 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℤ
278 ne0i 3880 . . . . . . . . . . . . . 14 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
27978, 278syl 17 . . . . . . . . . . . . 13 (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
280 infssuzcl 11648 . . . . . . . . . . . . 13 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
28164, 279, 280sylancr 694 . . . . . . . . . . . 12 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
2826, 281syl5eqel 2692 . . . . . . . . . . 11 (𝜑𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
283277, 282sseldi 3566 . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
28413, 283rpexpcld 12894 . . . . . . . . 9 (𝜑 → (𝑋𝐾) ∈ ℝ+)
285 peano2re 10088 . . . . . . . . . . . 12 𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
286232, 285syl 17 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
287286, 14remulcld 9949 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ∈ ℝ)
288232ltp1d 10833 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
289232, 286, 13, 288ltmul1dd 11803 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋))
290 min2 11895 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
291198, 205, 290sylancr 694 . . . . . . . . . . . . 13 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
2929, 291syl5eqbr 4618 . . . . . . . . . . . 12 (𝜑𝑋𝑈)
293292, 8syl6breq 4624 . . . . . . . . . . 11 (𝜑𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1)))
294 0red 9920 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
29531, 231, 255fsumge0 14368 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))))
296294, 232, 286, 295, 288lelttrd 10074 . . . . . . . . . . . 12 (𝜑 → 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
297 lemuldiv2 10783 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ ∧ 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))) → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
29814, 24, 286, 296, 297syl112anc 1322 . . . . . . . . . . 11 (𝜑 → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
299293, 298mpbird 246 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)))
300275, 287, 24, 289, 299ltletrd 10076 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < (abs‘(𝐹‘0)))
301275, 24, 284, 300ltmul1dd 11803 . . . . . . . 8 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
302274, 301eqbrtrd 4605 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
303225, 234, 29, 267, 302lelttrd 10074 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30446, 225, 29, 226, 303lelttrd 10074 . . . . 5 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30546, 29, 24, 304ltsub2dd 10519 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
30630, 46, 24ltaddsubd 10506 . . . 4 (𝜑 → ((((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)) ↔ ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))))
307305, 306mpbird 246 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)))
30820, 47, 24, 223, 307lelttrd 10074 . 2 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0)))
309 fveq2 6103 . . . . 5 (𝑥 = (𝑇 · 𝑋) → (𝐹𝑥) = (𝐹‘(𝑇 · 𝑋)))
310309fveq2d 6107 . . . 4 (𝑥 = (𝑇 · 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑇 · 𝑋))))
311310breq1d 4593 . . 3 (𝑥 = (𝑇 · 𝑋) → ((abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)) ↔ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))))
312311rspcev 3282 . 2 (((𝑇 · 𝑋) ∈ ℂ ∧ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))) → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
31316, 308, 312syl2anc 691 1 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  cun 3538  cin 3539  wss 3540  c0 3874  ifcif 4036   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  infcinf 8230  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  cexp 12722  abscabs 13822  Σcsu 14264  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-ply 23748  df-coe 23750  df-dgr 23751  df-log 24107  df-cxp 24108
This theorem is referenced by:  ftalem6  24604
  Copyright terms: Public domain W3C validator