MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyremlem Structured version   Visualization version   GIF version

Theorem plyremlem 23863
Description: Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
plyrem.1 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
Assertion
Ref Expression
plyremlem (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))

Proof of Theorem plyremlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plyrem.1 . . 3 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
2 ssid 3587 . . . . 5 ℂ ⊆ ℂ
3 ax-1cn 9873 . . . . 5 1 ∈ ℂ
4 plyid 23769 . . . . 5 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
52, 3, 4mp2an 704 . . . 4 Xp ∈ (Poly‘ℂ)
6 plyconst 23766 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
72, 6mpan 702 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
8 plysubcl 23782 . . . 4 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
95, 7, 8sylancr 694 . . 3 (𝐴 ∈ ℂ → (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
101, 9syl5eqel 2692 . 2 (𝐴 ∈ ℂ → 𝐺 ∈ (Poly‘ℂ))
11 negcl 10160 . . . . . . . . 9 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
12 addcom 10101 . . . . . . . . 9 ((-𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
1311, 12sylan 487 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
14 negsub 10208 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1514ancoms 468 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1613, 15eqtrd 2644 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧𝐴))
1716mpteq2dva 4672 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
18 cnex 9896 . . . . . . . 8 ℂ ∈ V
1918a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ∈ V)
20 negex 10158 . . . . . . . 8 -𝐴 ∈ V
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → -𝐴 ∈ V)
22 simpr 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 fconstmpt 5085 . . . . . . . 8 (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴)
2423a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴))
25 df-idp 23749 . . . . . . . . 9 Xp = ( I ↾ ℂ)
26 mptresid 5375 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ 𝑧) = ( I ↾ ℂ)
2725, 26eqtr4i 2635 . . . . . . . 8 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
2827a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → Xp = (𝑧 ∈ ℂ ↦ 𝑧))
2919, 21, 22, 24, 28offval2 6812 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘𝑓 + Xp) = (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)))
30 simpl 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
31 fconstmpt 5085 . . . . . . . 8 (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)
3231a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴))
3319, 22, 30, 28, 32offval2 6812 . . . . . 6 (𝐴 ∈ ℂ → (Xp𝑓 − (ℂ × {𝐴})) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
3417, 29, 333eqtr4d 2654 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘𝑓 + Xp) = (Xp𝑓 − (ℂ × {𝐴})))
3534, 1syl6eqr 2662 . . . 4 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘𝑓 + Xp) = 𝐺)
3635fveq2d 6107 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘𝑓 + Xp)) = (deg‘𝐺))
37 plyconst 23766 . . . . 5 ((ℂ ⊆ ℂ ∧ -𝐴 ∈ ℂ) → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
382, 11, 37sylancr 694 . . . 4 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
395a1i 11 . . . 4 (𝐴 ∈ ℂ → Xp ∈ (Poly‘ℂ))
40 0dgr 23805 . . . . . 6 (-𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
4111, 40syl 17 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
42 0lt1 10429 . . . . 5 0 < 1
4341, 42syl6eqbr 4622 . . . 4 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) < 1)
44 eqid 2610 . . . . 5 (deg‘(ℂ × {-𝐴})) = (deg‘(ℂ × {-𝐴}))
45 dgrid 23824 . . . . . 6 (deg‘Xp) = 1
4645eqcomi 2619 . . . . 5 1 = (deg‘Xp)
4744, 46dgradd2 23828 . . . 4 (((ℂ × {-𝐴}) ∈ (Poly‘ℂ) ∧ Xp ∈ (Poly‘ℂ) ∧ (deg‘(ℂ × {-𝐴})) < 1) → (deg‘((ℂ × {-𝐴}) ∘𝑓 + Xp)) = 1)
4838, 39, 43, 47syl3anc 1318 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘𝑓 + Xp)) = 1)
4936, 48eqtr3d 2646 . 2 (𝐴 ∈ ℂ → (deg‘𝐺) = 1)
501, 33syl5eq 2656 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐺 = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
5150fveq1d 6105 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
5251adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
53 ovex 6577 . . . . . . . . . 10 (𝑧𝐴) ∈ V
54 eqid 2610 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ (𝑧𝐴)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴))
5554fvmpt2 6200 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝑧𝐴) ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5622, 53, 55sylancl 693 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5752, 56eqtrd 2644 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = (𝑧𝐴))
5857eqeq1d 2612 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ (𝑧𝐴) = 0))
59 subeq0 10186 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6059ancoms 468 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6158, 60bitrd 267 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ 𝑧 = 𝐴))
6261pm5.32da 671 . . . . 5 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0) ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
63 plyf 23758 . . . . . 6 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
64 ffn 5958 . . . . . 6 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
65 fniniseg 6246 . . . . . 6 (𝐺 Fn ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
6610, 63, 64, 654syl 19 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
67 eleq1a 2683 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 = 𝐴𝑧 ∈ ℂ))
6867pm4.71rd 665 . . . . 5 (𝐴 ∈ ℂ → (𝑧 = 𝐴 ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
6962, 66, 683bitr4d 299 . . . 4 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 = 𝐴))
70 velsn 4141 . . . 4 (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴)
7169, 70syl6bbr 277 . . 3 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 ∈ {𝐴}))
7271eqrdv 2608 . 2 (𝐴 ∈ ℂ → (𝐺 “ {0}) = {𝐴})
7310, 49, 723jca 1235 1 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643   I cid 4948   × cxp 5036  ccnv 5037  cres 5040  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145  -cneg 10146  Polycply 23744  Xpcidp 23745  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-idp 23749  df-coe 23750  df-dgr 23751
This theorem is referenced by:  plyrem  23864  facth  23865  fta1lem  23866  vieta1lem1  23869  vieta1lem2  23870  taylply2  23926  ftalem7  24605
  Copyright terms: Public domain W3C validator