MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem3 Structured version   Visualization version   GIF version

Theorem ftalem3 24601
Description: Lemma for fta 24606. There exists a global minimum of the function abs ∘ 𝐹. The proof uses a circle of radius 𝑟 where 𝑟 is the value coming from ftalem1 24599; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem3.5 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
ftalem3.6 𝐽 = (TopOpen‘ℂfld)
ftalem3.7 (𝜑𝑅 ∈ ℝ+)
ftalem3.8 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Assertion
Ref Expression
ftalem3 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑧,𝐷   𝑥,𝑁   𝑥,𝑦,𝐹,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐷(𝑦)   𝑅(𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐽(𝑦)   𝑁(𝑦,𝑧)

Proof of Theorem ftalem3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ftalem3.5 . . . 4 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
2 ssrab2 3650 . . . 4 {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅} ⊆ ℂ
31, 2eqsstri 3598 . . 3 𝐷 ⊆ ℂ
4 ftalem3.6 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
54cnfldtopon 22396 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
6 resttopon 20775 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
75, 3, 6mp2an 704 . . . . . 6 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
87toponunii 20547 . . . . 5 𝐷 = (𝐽t 𝐷)
9 eqid 2610 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
10 cnxmet 22386 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
1110a1i 11 . . . . . . 7 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
12 0cn 9911 . . . . . . . 8 0 ∈ ℂ
1312a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
14 ftalem3.7 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1514rpxrd 11749 . . . . . . 7 (𝜑𝑅 ∈ ℝ*)
164cnfldtopn 22395 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
17 eqid 2610 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
1817cnmetdval 22384 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
1912, 18mpan 702 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
20 df-neg 10148 . . . . . . . . . . . . . 14 -𝑦 = (0 − 𝑦)
2120fveq2i 6106 . . . . . . . . . . . . 13 (abs‘-𝑦) = (abs‘(0 − 𝑦))
22 absneg 13865 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (abs‘-𝑦) = (abs‘𝑦))
2321, 22syl5eqr 2658 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) = (abs‘𝑦))
2419, 23eqtrd 2644 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘𝑦))
2524breq1d 4593 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((0(abs ∘ − )𝑦) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
2625rabbiia 3161 . . . . . . . . 9 {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅} = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
271, 26eqtr4i 2635 . . . . . . . 8 𝐷 = {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅}
2816, 27blcld 22120 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → 𝐷 ∈ (Clsd‘𝐽))
2911, 13, 15, 28syl3anc 1318 . . . . . 6 (𝜑𝐷 ∈ (Clsd‘𝐽))
3014rpred 11748 . . . . . . 7 (𝜑𝑅 ∈ ℝ)
31 fveq2 6103 . . . . . . . . . . 11 (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥))
3231breq1d 4593 . . . . . . . . . 10 (𝑦 = 𝑥 → ((abs‘𝑦) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
3332, 1elrab2 3333 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ≤ 𝑅))
3433simprbi 479 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ≤ 𝑅)
3534rgen 2906 . . . . . . 7 𝑥𝐷 (abs‘𝑥) ≤ 𝑅
36 breq2 4587 . . . . . . . . 9 (𝑠 = 𝑅 → ((abs‘𝑥) ≤ 𝑠 ↔ (abs‘𝑥) ≤ 𝑅))
3736ralbidv 2969 . . . . . . . 8 (𝑠 = 𝑅 → (∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠 ↔ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑅))
3837rspcev 3282 . . . . . . 7 ((𝑅 ∈ ℝ ∧ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑅) → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
3930, 35, 38sylancl 693 . . . . . 6 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
40 eqid 2610 . . . . . . . 8 (𝐽t 𝐷) = (𝐽t 𝐷)
414, 40cnheibor 22562 . . . . . . 7 (𝐷 ⊆ ℂ → ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)))
423, 41ax-mp 5 . . . . . 6 ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠))
4329, 39, 42sylanbrc 695 . . . . 5 (𝜑 → (𝐽t 𝐷) ∈ Comp)
44 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
45 plycn 23821 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))
4644, 45syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
47 abscncf 22512 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
4847a1i 11 . . . . . . . 8 (𝜑 → abs ∈ (ℂ–cn→ℝ))
4946, 48cncfco 22518 . . . . . . 7 (𝜑 → (abs ∘ 𝐹) ∈ (ℂ–cn→ℝ))
50 ssid 3587 . . . . . . . 8 ℂ ⊆ ℂ
51 ax-resscn 9872 . . . . . . . 8 ℝ ⊆ ℂ
524cnfldtop 22397 . . . . . . . . . . 11 𝐽 ∈ Top
535toponunii 20547 . . . . . . . . . . . 12 ℂ = 𝐽
5453restid 15917 . . . . . . . . . . 11 (𝐽 ∈ Top → (𝐽t ℂ) = 𝐽)
5552, 54ax-mp 5 . . . . . . . . . 10 (𝐽t ℂ) = 𝐽
5655eqcomi 2619 . . . . . . . . 9 𝐽 = (𝐽t ℂ)
574tgioo2 22414 . . . . . . . . 9 (topGen‘ran (,)) = (𝐽t ℝ)
584, 56, 57cncfcn 22520 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,))))
5950, 51, 58mp2an 704 . . . . . . 7 (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,)))
6049, 59syl6eleq 2698 . . . . . 6 (𝜑 → (abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))))
6153cnrest 20899 . . . . . 6 (((abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
6260, 3, 61sylancl 693 . . . . 5 (𝜑 → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
6314rpge0d 11752 . . . . . . 7 (𝜑 → 0 ≤ 𝑅)
64 fveq2 6103 . . . . . . . . . 10 (𝑦 = 0 → (abs‘𝑦) = (abs‘0))
65 abs0 13873 . . . . . . . . . 10 (abs‘0) = 0
6664, 65syl6eq 2660 . . . . . . . . 9 (𝑦 = 0 → (abs‘𝑦) = 0)
6766breq1d 4593 . . . . . . . 8 (𝑦 = 0 → ((abs‘𝑦) ≤ 𝑅 ↔ 0 ≤ 𝑅))
6867, 1elrab2 3333 . . . . . . 7 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ 0 ≤ 𝑅))
6913, 63, 68sylanbrc 695 . . . . . 6 (𝜑 → 0 ∈ 𝐷)
70 ne0i 3880 . . . . . 6 (0 ∈ 𝐷𝐷 ≠ ∅)
7169, 70syl 17 . . . . 5 (𝜑𝐷 ≠ ∅)
728, 9, 43, 62, 71evth2 22567 . . . 4 (𝜑 → ∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥))
73 fvres 6117 . . . . . . . . 9 (𝑧𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
7473ad2antlr 759 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
75 plyf 23758 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
7644, 75syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
7776ad2antrr 758 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝐹:ℂ⟶ℂ)
78 simplr 788 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧𝐷)
793, 78sseldi 3566 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧 ∈ ℂ)
80 fvco3 6185 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑧 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
8177, 79, 80syl2anc 691 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
8274, 81eqtrd 2644 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = (abs‘(𝐹𝑧)))
83 fvres 6117 . . . . . . . . 9 (𝑥𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
8483adantl 481 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
85 simpr 476 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥𝐷)
863, 85sseldi 3566 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
87 fvco3 6185 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑥 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8877, 86, 87syl2anc 691 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8984, 88eqtrd 2644 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = (abs‘(𝐹𝑥)))
9082, 89breq12d 4596 . . . . . 6 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
9190ralbidva 2968 . . . . 5 ((𝜑𝑧𝐷) → (∀𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
9291rexbidva 3031 . . . 4 (𝜑 → (∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
9372, 92mpbid 221 . . 3 (𝜑 → ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
94 ssrexv 3630 . . 3 (𝐷 ⊆ ℂ → (∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
953, 93, 94mpsyl 66 . 2 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
9669adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 0 ∈ 𝐷)
97 fveq2 6103 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
9897fveq2d 6107 . . . . . . . . 9 (𝑥 = 0 → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘0)))
9998breq2d 4595 . . . . . . . 8 (𝑥 = 0 → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
10099rspcv 3278 . . . . . . 7 (0 ∈ 𝐷 → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
10196, 100syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
10276ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝐹:ℂ⟶ℂ)
103 ffvelrn 6265 . . . . . . . . . . 11 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
104102, 12, 103sylancl 693 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹‘0) ∈ ℂ)
105104abscld 14023 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ∈ ℝ)
106 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ (ℂ ∖ 𝐷))
107106eldifad 3552 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ ℂ)
108102, 107ffvelrnd 6268 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑥) ∈ ℂ)
109108abscld 14023 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑥)) ∈ ℝ)
110 ftalem3.8 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
111110ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
112106eldifbd 3553 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ 𝑥𝐷)
11333baib 942 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
114107, 113syl 17 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
115112, 114mtbid 313 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ (abs‘𝑥) ≤ 𝑅)
11630ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ)
117107abscld 14023 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘𝑥) ∈ ℝ)
118116, 117ltnled 10063 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑅 < (abs‘𝑥) ↔ ¬ (abs‘𝑥) ≤ 𝑅))
119115, 118mpbird 246 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 < (abs‘𝑥))
120 rsp 2913 . . . . . . . . . 10 (∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))) → (𝑥 ∈ ℂ → (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
121111, 107, 119, 120syl3c 64 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))
122105, 109, 121ltled 10064 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥)))
123 simplr 788 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑧 ∈ ℂ)
124102, 123ffvelrnd 6268 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑧) ∈ ℂ)
125124abscld 14023 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑧)) ∈ ℝ)
126 letr 10010 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
127125, 105, 109, 126syl3anc 1318 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
128122, 127mpan2d 706 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
129128ralrimdva 2952 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
130101, 129syld 46 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
131130ancld 574 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))))
132 ralunb 3756 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
133 undif2 3996 . . . . . . 7 (𝐷 ∪ (ℂ ∖ 𝐷)) = (𝐷 ∪ ℂ)
134 ssequn1 3745 . . . . . . . 8 (𝐷 ⊆ ℂ ↔ (𝐷 ∪ ℂ) = ℂ)
1353, 134mpbi 219 . . . . . . 7 (𝐷 ∪ ℂ) = ℂ
136133, 135eqtri 2632 . . . . . 6 (𝐷 ∪ (ℂ ∖ 𝐷)) = ℂ
137136raleqi 3119 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
138132, 137bitr3i 265 . . . 4 ((∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
139131, 138syl6ib 240 . . 3 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
140139reximdva 3000 . 2 (𝜑 → (∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
14195, 140mpd 15 1 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  cun 3538  wss 3540  c0 3874   class class class wbr 4583  ran crn 5039  cres 5040  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cn 10897  +crp 11708  (,)cioo 12046  abscabs 13822  t crest 15904  TopOpenctopn 15905  topGenctg 15921  ∞Metcxmt 19552  fldccnfld 19567  Topctop 20517  TopOnctopon 20518  Clsdccld 20630   Cn ccn 20838  Compccmp 20999  cnccncf 22487  Polycply 23744  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cls 20635  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  fta  24606
  Copyright terms: Public domain W3C validator