MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem3 Structured version   Unicode version

Theorem ftalem3 23488
Description: Lemma for fta 23493. There exists a global minimum of the function  abs  o.  F. The proof uses a circle of radius  r where  r is the value coming from ftalem1 23486; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1  |-  A  =  (coeff `  F )
ftalem.2  |-  N  =  (deg `  F )
ftalem.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
ftalem.4  |-  ( ph  ->  N  e.  NN )
ftalem3.5  |-  D  =  { y  e.  CC  |  ( abs `  y
)  <_  R }
ftalem3.6  |-  J  =  ( TopOpen ` fld )
ftalem3.7  |-  ( ph  ->  R  e.  RR+ )
ftalem3.8  |-  ( ph  ->  A. x  e.  CC  ( R  <  ( abs `  x )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
Assertion
Ref Expression
ftalem3  |-  ( ph  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) )
Distinct variable groups:    x, A    x, z, D    x, N    x, y, F, z    x, J, z    ph, x, y, z    x, R, y
Allowed substitution hints:    A( y, z)    D( y)    R( z)    S( x, y, z)    J( y)    N( y, z)

Proof of Theorem ftalem3
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 ftalem3.5 . . . 4  |-  D  =  { y  e.  CC  |  ( abs `  y
)  <_  R }
2 ssrab2 3516 . . . 4  |-  { y  e.  CC  |  ( abs `  y )  <_  R }  C_  CC
31, 2eqsstri 3464 . . 3  |-  D  C_  CC
4 ftalem3.6 . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
54cnfldtopon 21398 . . . . . . 7  |-  J  e.  (TopOn `  CC )
6 resttopon 19771 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  D  C_  CC )  ->  ( Jt  D )  e.  (TopOn `  D ) )
75, 3, 6mp2an 670 . . . . . 6  |-  ( Jt  D )  e.  (TopOn `  D )
87toponunii 19541 . . . . 5  |-  D  = 
U. ( Jt  D )
9 eqid 2396 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
10 cnxmet 21388 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
1110a1i 11 . . . . . . 7  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
12 0cn 9521 . . . . . . . 8  |-  0  e.  CC
1312a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  CC )
14 ftalem3.7 . . . . . . . 8  |-  ( ph  ->  R  e.  RR+ )
1514rpxrd 11200 . . . . . . 7  |-  ( ph  ->  R  e.  RR* )
164cnfldtopn 21397 . . . . . . . 8  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
17 eqid 2396 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1817cnmetdval 21386 . . . . . . . . . . . . 13  |-  ( ( 0  e.  CC  /\  y  e.  CC )  ->  ( 0 ( abs 
o.  -  ) y
)  =  ( abs `  ( 0  -  y
) ) )
1912, 18mpan 668 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
0 ( abs  o.  -  ) y )  =  ( abs `  (
0  -  y ) ) )
20 df-neg 9743 . . . . . . . . . . . . . 14  |-  -u y  =  ( 0  -  y )
2120fveq2i 5794 . . . . . . . . . . . . 13  |-  ( abs `  -u y )  =  ( abs `  (
0  -  y ) )
22 absneg 13135 . . . . . . . . . . . . 13  |-  ( y  e.  CC  ->  ( abs `  -u y )  =  ( abs `  y
) )
2321, 22syl5eqr 2451 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  ( abs `  ( 0  -  y ) )  =  ( abs `  y
) )
2419, 23eqtrd 2437 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
0 ( abs  o.  -  ) y )  =  ( abs `  y
) )
2524breq1d 4394 . . . . . . . . . 10  |-  ( y  e.  CC  ->  (
( 0 ( abs 
o.  -  ) y
)  <_  R  <->  ( abs `  y )  <_  R
) )
2625rabbiia 3040 . . . . . . . . 9  |-  { y  e.  CC  |  ( 0 ( abs  o.  -  ) y )  <_  R }  =  { y  e.  CC  |  ( abs `  y
)  <_  R }
271, 26eqtr4i 2428 . . . . . . . 8  |-  D  =  { y  e.  CC  |  ( 0 ( abs  o.  -  )
y )  <_  R }
2816, 27blcld 21116 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  D  e.  ( Clsd `  J
) )
2911, 13, 15, 28syl3anc 1226 . . . . . 6  |-  ( ph  ->  D  e.  ( Clsd `  J ) )
3014rpred 11199 . . . . . . 7  |-  ( ph  ->  R  e.  RR )
31 fveq2 5791 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( abs `  y )  =  ( abs `  x
) )
3231breq1d 4394 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( abs `  y
)  <_  R  <->  ( abs `  x )  <_  R
) )
3332, 1elrab2 3201 . . . . . . . . 9  |-  ( x  e.  D  <->  ( x  e.  CC  /\  ( abs `  x )  <_  R
) )
3433simprbi 462 . . . . . . . 8  |-  ( x  e.  D  ->  ( abs `  x )  <_  R )
3534rgen 2756 . . . . . . 7  |-  A. x  e.  D  ( abs `  x )  <_  R
36 breq2 4388 . . . . . . . . 9  |-  ( s  =  R  ->  (
( abs `  x
)  <_  s  <->  ( abs `  x )  <_  R
) )
3736ralbidv 2835 . . . . . . . 8  |-  ( s  =  R  ->  ( A. x  e.  D  ( abs `  x )  <_  s  <->  A. x  e.  D  ( abs `  x )  <_  R
) )
3837rspcev 3152 . . . . . . 7  |-  ( ( R  e.  RR  /\  A. x  e.  D  ( abs `  x )  <_  R )  ->  E. s  e.  RR  A. x  e.  D  ( abs `  x )  <_  s )
3930, 35, 38sylancl 660 . . . . . 6  |-  ( ph  ->  E. s  e.  RR  A. x  e.  D  ( abs `  x )  <_  s )
40 eqid 2396 . . . . . . . 8  |-  ( Jt  D )  =  ( Jt  D )
414, 40cnheibor 21563 . . . . . . 7  |-  ( D 
C_  CC  ->  ( ( Jt  D )  e.  Comp  <->  ( D  e.  ( Clsd `  J )  /\  E. s  e.  RR  A. x  e.  D  ( abs `  x )  <_  s
) ) )
423, 41ax-mp 5 . . . . . 6  |-  ( ( Jt  D )  e.  Comp  <->  ( D  e.  ( Clsd `  J )  /\  E. s  e.  RR  A. x  e.  D  ( abs `  x )  <_  s
) )
4329, 39, 42sylanbrc 662 . . . . 5  |-  ( ph  ->  ( Jt  D )  e.  Comp )
44 ftalem.3 . . . . . . . . 9  |-  ( ph  ->  F  e.  (Poly `  S ) )
45 plycn 22766 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  F  e.  ( CC -cn-> CC ) )
4644, 45syl 16 . . . . . . . 8  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
47 abscncf 21513 . . . . . . . . 9  |-  abs  e.  ( CC -cn-> RR )
4847a1i 11 . . . . . . . 8  |-  ( ph  ->  abs  e.  ( CC
-cn-> RR ) )
4946, 48cncfco 21519 . . . . . . 7  |-  ( ph  ->  ( abs  o.  F
)  e.  ( CC
-cn-> RR ) )
50 ssid 3453 . . . . . . . 8  |-  CC  C_  CC
51 ax-resscn 9482 . . . . . . . 8  |-  RR  C_  CC
524cnfldtop 21399 . . . . . . . . . . 11  |-  J  e. 
Top
535toponunii 19541 . . . . . . . . . . . 12  |-  CC  =  U. J
5453restid 14864 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  ( Jt  CC )  =  J
)
5552, 54ax-mp 5 . . . . . . . . . 10  |-  ( Jt  CC )  =  J
5655eqcomi 2409 . . . . . . . . 9  |-  J  =  ( Jt  CC )
574tgioo2 21416 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( Jt  RR )
584, 56, 57cncfcn 21521 . . . . . . . 8  |-  ( ( CC  C_  CC  /\  RR  C_  CC )  ->  ( CC -cn-> RR )  =  ( J  Cn  ( topGen ` 
ran  (,) ) ) )
5950, 51, 58mp2an 670 . . . . . . 7  |-  ( CC
-cn-> RR )  =  ( J  Cn  ( topGen ` 
ran  (,) ) )
6049, 59syl6eleq 2494 . . . . . 6  |-  ( ph  ->  ( abs  o.  F
)  e.  ( J  Cn  ( topGen `  ran  (,) ) ) )
6153cnrest 19895 . . . . . 6  |-  ( ( ( abs  o.  F
)  e.  ( J  Cn  ( topGen `  ran  (,) ) )  /\  D  C_  CC )  ->  (
( abs  o.  F
)  |`  D )  e.  ( ( Jt  D )  Cn  ( topGen `  ran  (,) ) ) )
6260, 3, 61sylancl 660 . . . . 5  |-  ( ph  ->  ( ( abs  o.  F )  |`  D )  e.  ( ( Jt  D )  Cn  ( topGen ` 
ran  (,) ) ) )
6314rpge0d 11203 . . . . . . 7  |-  ( ph  ->  0  <_  R )
64 fveq2 5791 . . . . . . . . . 10  |-  ( y  =  0  ->  ( abs `  y )  =  ( abs `  0
) )
65 abs0 13143 . . . . . . . . . 10  |-  ( abs `  0 )  =  0
6664, 65syl6eq 2453 . . . . . . . . 9  |-  ( y  =  0  ->  ( abs `  y )  =  0 )
6766breq1d 4394 . . . . . . . 8  |-  ( y  =  0  ->  (
( abs `  y
)  <_  R  <->  0  <_  R ) )
6867, 1elrab2 3201 . . . . . . 7  |-  ( 0  e.  D  <->  ( 0  e.  CC  /\  0  <_  R ) )
6913, 63, 68sylanbrc 662 . . . . . 6  |-  ( ph  ->  0  e.  D )
70 ne0i 3734 . . . . . 6  |-  ( 0  e.  D  ->  D  =/=  (/) )
7169, 70syl 16 . . . . 5  |-  ( ph  ->  D  =/=  (/) )
728, 9, 43, 62, 71evth2 21568 . . . 4  |-  ( ph  ->  E. z  e.  D  A. x  e.  D  ( ( ( abs 
o.  F )  |`  D ) `  z
)  <_  ( (
( abs  o.  F
)  |`  D ) `  x ) )
73 fvres 5805 . . . . . . . . 9  |-  ( z  e.  D  ->  (
( ( abs  o.  F )  |`  D ) `
 z )  =  ( ( abs  o.  F ) `  z
) )
7473ad2antlr 724 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( abs  o.  F )  |`  D ) `
 z )  =  ( ( abs  o.  F ) `  z
) )
75 plyf 22703 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
7644, 75syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : CC --> CC )
7776ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  F : CC --> CC )
78 simplr 753 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  z  e.  D )
793, 78sseldi 3432 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  z  e.  CC )
80 fvco3 5868 . . . . . . . . 9  |-  ( ( F : CC --> CC  /\  z  e.  CC )  ->  ( ( abs  o.  F ) `  z
)  =  ( abs `  ( F `  z
) ) )
8177, 79, 80syl2anc 659 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( abs  o.  F
) `  z )  =  ( abs `  ( F `  z )
) )
8274, 81eqtrd 2437 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( abs  o.  F )  |`  D ) `
 z )  =  ( abs `  ( F `  z )
) )
83 fvres 5805 . . . . . . . . 9  |-  ( x  e.  D  ->  (
( ( abs  o.  F )  |`  D ) `
 x )  =  ( ( abs  o.  F ) `  x
) )
8483adantl 464 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( abs  o.  F )  |`  D ) `
 x )  =  ( ( abs  o.  F ) `  x
) )
85 simpr 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  x  e.  D )
863, 85sseldi 3432 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  x  e.  CC )
87 fvco3 5868 . . . . . . . . 9  |-  ( ( F : CC --> CC  /\  x  e.  CC )  ->  ( ( abs  o.  F ) `  x
)  =  ( abs `  ( F `  x
) ) )
8877, 86, 87syl2anc 659 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( abs  o.  F
) `  x )  =  ( abs `  ( F `  x )
) )
8984, 88eqtrd 2437 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( abs  o.  F )  |`  D ) `
 x )  =  ( abs `  ( F `  x )
) )
9082, 89breq12d 4397 . . . . . 6  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  D )  ->  (
( ( ( abs 
o.  F )  |`  D ) `  z
)  <_  ( (
( abs  o.  F
)  |`  D ) `  x )  <->  ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) ) ) )
9190ralbidva 2832 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  ( A. x  e.  D  ( ( ( abs 
o.  F )  |`  D ) `  z
)  <_  ( (
( abs  o.  F
)  |`  D ) `  x )  <->  A. x  e.  D  ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) ) ) )
9291rexbidva 2907 . . . 4  |-  ( ph  ->  ( E. z  e.  D  A. x  e.  D  ( ( ( abs  o.  F )  |`  D ) `  z
)  <_  ( (
( abs  o.  F
)  |`  D ) `  x )  <->  E. z  e.  D  A. x  e.  D  ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) ) ) )
9372, 92mpbid 210 . . 3  |-  ( ph  ->  E. z  e.  D  A. x  e.  D  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
) )
94 ssrexv 3496 . . 3  |-  ( D 
C_  CC  ->  ( E. z  e.  D  A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  E. z  e.  CC  A. x  e.  D  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
953, 93, 94mpsyl 63 . 2  |-  ( ph  ->  E. z  e.  CC  A. x  e.  D  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
) )
9669adantr 463 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  0  e.  D )
97 fveq2 5791 . . . . . . . . . 10  |-  ( x  =  0  ->  ( F `  x )  =  ( F ` 
0 ) )
9897fveq2d 5795 . . . . . . . . 9  |-  ( x  =  0  ->  ( abs `  ( F `  x ) )  =  ( abs `  ( F `  0 )
) )
9998breq2d 4396 . . . . . . . 8  |-  ( x  =  0  ->  (
( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  <->  ( abs `  ( F `  z
) )  <_  ( abs `  ( F ` 
0 ) ) ) )
10099rspcv 3148 . . . . . . 7  |-  ( 0  e.  D  ->  ( A. x  e.  D  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
)  ->  ( abs `  ( F `  z
) )  <_  ( abs `  ( F ` 
0 ) ) ) )
10196, 100syl 16 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  ( abs `  ( F `  z
) )  <_  ( abs `  ( F ` 
0 ) ) ) )
10276ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  F : CC --> CC )
103 ffvelrn 5948 . . . . . . . . . . 11  |-  ( ( F : CC --> CC  /\  0  e.  CC )  ->  ( F `  0
)  e.  CC )
104102, 12, 103sylancl 660 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( F `  0 )  e.  CC )
105104abscld 13292 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F ` 
0 ) )  e.  RR )
106 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  x  e.  ( CC  \  D
) )
107106eldifad 3418 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  x  e.  CC )
108102, 107ffvelrnd 5951 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( F `  x )  e.  CC )
109108abscld 13292 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F `  x ) )  e.  RR )
110 ftalem3.8 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  CC  ( R  <  ( abs `  x )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) ) )
111110ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  A. x  e.  CC  ( R  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
112106eldifbd 3419 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  -.  x  e.  D )
11333baib 901 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
x  e.  D  <->  ( abs `  x )  <_  R
) )
114107, 113syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  (
x  e.  D  <->  ( abs `  x )  <_  R
) )
115112, 114mtbid 298 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  -.  ( abs `  x )  <_  R )
11630ad2antrr 723 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  R  e.  RR )
117107abscld 13292 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  x )  e.  RR )
118116, 117ltnled 9665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( R  <  ( abs `  x
)  <->  -.  ( abs `  x )  <_  R
) )
119115, 118mpbird 232 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  R  <  ( abs `  x
) )
120 rsp 2762 . . . . . . . . . 10  |-  ( A. x  e.  CC  ( R  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) )  ->  ( x  e.  CC  ->  ( R  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
121111, 107, 119, 120syl3c 61 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  x )
) )
122105, 109, 121ltled 9666 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F ` 
0 ) )  <_ 
( abs `  ( F `  x )
) )
123 simplr 753 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  z  e.  CC )
124102, 123ffvelrnd 5951 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( F `  z )  e.  CC )
125124abscld 13292 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  ( abs `  ( F `  z ) )  e.  RR )
126 letr 9611 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  z )
)  e.  RR  /\  ( abs `  ( F `
 0 ) )  e.  RR  /\  ( abs `  ( F `  x ) )  e.  RR )  ->  (
( ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  0
) )  /\  ( abs `  ( F ` 
0 ) )  <_ 
( abs `  ( F `  x )
) )  ->  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) ) )
127125, 105, 109, 126syl3anc 1226 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  (
( ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  0
) )  /\  ( abs `  ( F ` 
0 ) )  <_ 
( abs `  ( F `  x )
) )  ->  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) ) )
128122, 127mpan2d 672 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  x  e.  ( CC  \  D
) )  ->  (
( abs `  ( F `  z )
)  <_  ( abs `  ( F `  0
) )  ->  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) ) )
129128ralrimdva 2814 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  0 )
)  ->  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
130101, 129syld 44 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
131130ancld 551 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  /\  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) ) )
132 ralunb 3616 . . . . 5  |-  ( A. x  e.  ( D  u.  ( CC  \  D
) ) ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) )  <->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  /\  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
133 undif2 3837 . . . . . . 7  |-  ( D  u.  ( CC  \  D ) )  =  ( D  u.  CC )
134 ssequn1 3605 . . . . . . . 8  |-  ( D 
C_  CC  <->  ( D  u.  CC )  =  CC )
1353, 134mpbi 208 . . . . . . 7  |-  ( D  u.  CC )  =  CC
136133, 135eqtri 2425 . . . . . 6  |-  ( D  u.  ( CC  \  D ) )  =  CC
137136raleqi 3000 . . . . 5  |-  ( A. x  e.  ( D  u.  ( CC  \  D
) ) ( abs `  ( F `  z
) )  <_  ( abs `  ( F `  x ) )  <->  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )
138132, 137bitr3i 251 . . . 4  |-  ( ( A. x  e.  D  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
)  /\  A. x  e.  ( CC  \  D
) ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )  <->  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )
139131, 138syl6ib 226 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( A. x  e.  D  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
)  ->  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
140139reximdva 2871 . 2  |-  ( ph  ->  ( E. z  e.  CC  A. x  e.  D  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
14195, 140mpd 15 1  |-  ( ph  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1836    =/= wne 2591   A.wral 2746   E.wrex 2747   {crab 2750    \ cdif 3403    u. cun 3404    C_ wss 3406   (/)c0 3728   class class class wbr 4384   ran crn 4931    |` cres 4932    o. ccom 4934   -->wf 5509   ` cfv 5513  (class class class)co 6218   CCcc 9423   RRcr 9424   0cc0 9425   RR*cxr 9560    < clt 9561    <_ cle 9562    - cmin 9740   -ucneg 9741   NNcn 10474   RR+crp 11161   (,)cioo 11472   abscabs 13092   ↾t crest 14851   TopOpenctopn 14852   topGenctg 14868   *Metcxmt 18539  ℂfldccnfld 18556   Topctop 19502  TopOnctopon 19503   Clsdccld 19625    Cn ccn 19834   Compccmp 19995   -cn->ccncf 21488  Polycply 22689  coeffccoe 22691  degcdgr 22692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-inf2 7994  ax-cnex 9481  ax-resscn 9482  ax-1cn 9483  ax-icn 9484  ax-addcl 9485  ax-addrcl 9486  ax-mulcl 9487  ax-mulrcl 9488  ax-mulcom 9489  ax-addass 9490  ax-mulass 9491  ax-distr 9492  ax-i2m1 9493  ax-1ne0 9494  ax-1rid 9495  ax-rnegex 9496  ax-rrecex 9497  ax-cnre 9498  ax-pre-lttri 9499  ax-pre-lttrn 9500  ax-pre-ltadd 9501  ax-pre-mulgt0 9502  ax-pre-sup 9503  ax-addf 9504  ax-mulf 9505
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rmo 2754  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4181  df-int 4217  df-iun 4262  df-iin 4263  df-br 4385  df-opab 4443  df-mpt 4444  df-tr 4478  df-eprel 4722  df-id 4726  df-po 4731  df-so 4732  df-fr 4769  df-se 4770  df-we 4771  df-ord 4812  df-on 4813  df-lim 4814  df-suc 4815  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-isom 5522  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-of 6461  df-om 6622  df-1st 6721  df-2nd 6722  df-supp 6840  df-recs 6982  df-rdg 7016  df-1o 7070  df-2o 7071  df-oadd 7074  df-er 7251  df-map 7362  df-pm 7363  df-ixp 7411  df-en 7458  df-dom 7459  df-sdom 7460  df-fin 7461  df-fsupp 7767  df-fi 7808  df-sup 7838  df-oi 7872  df-card 8255  df-cda 8483  df-pnf 9563  df-mnf 9564  df-xr 9565  df-ltxr 9566  df-le 9567  df-sub 9742  df-neg 9743  df-div 10146  df-nn 10475  df-2 10533  df-3 10534  df-4 10535  df-5 10536  df-6 10537  df-7 10538  df-8 10539  df-9 10540  df-10 10541  df-n0 10735  df-z 10804  df-dec 10918  df-uz 11024  df-q 11124  df-rp 11162  df-xneg 11261  df-xadd 11262  df-xmul 11263  df-ioo 11476  df-icc 11479  df-fz 11616  df-fzo 11740  df-fl 11851  df-seq 12034  df-exp 12093  df-hash 12331  df-cj 12957  df-re 12958  df-im 12959  df-sqrt 13093  df-abs 13094  df-clim 13336  df-rlim 13337  df-sum 13534  df-struct 14659  df-ndx 14660  df-slot 14661  df-base 14662  df-sets 14663  df-ress 14664  df-plusg 14738  df-mulr 14739  df-starv 14740  df-sca 14741  df-vsca 14742  df-ip 14743  df-tset 14744  df-ple 14745  df-ds 14747  df-unif 14748  df-hom 14749  df-cco 14750  df-rest 14853  df-topn 14854  df-0g 14872  df-gsum 14873  df-topgen 14874  df-pt 14875  df-prds 14878  df-xrs 14932  df-qtop 14937  df-imas 14938  df-xps 14940  df-mre 15016  df-mrc 15017  df-acs 15019  df-mgm 16012  df-sgrp 16051  df-mnd 16061  df-submnd 16107  df-mulg 16200  df-cntz 16495  df-cmn 16940  df-psmet 18547  df-xmet 18548  df-met 18549  df-bl 18550  df-mopn 18551  df-cnfld 18557  df-top 19507  df-bases 19509  df-topon 19510  df-topsp 19511  df-cld 19628  df-cls 19630  df-cn 19837  df-cnp 19838  df-haus 19925  df-cmp 19996  df-tx 20171  df-hmeo 20364  df-xms 20931  df-ms 20932  df-tms 20933  df-cncf 21490  df-0p 22185  df-ply 22693  df-coe 22695  df-dgr 22696
This theorem is referenced by:  fta  23493
  Copyright terms: Public domain W3C validator