Proof of Theorem ftalem1
Step | Hyp | Ref
| Expression |
1 | | ftalem1.6 |
. . . 4
⊢ 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) |
2 | | fzfid 12634 |
. . . . . 6
⊢ (𝜑 → (0...(𝑁 − 1)) ∈ Fin) |
3 | | ftalem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
4 | | ftalem.1 |
. . . . . . . . . 10
⊢ 𝐴 = (coeff‘𝐹) |
5 | 4 | coef3 23792 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
6 | 3, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
7 | | elfznn0 12302 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
8 | | ffvelrn 6265 |
. . . . . . . 8
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
9 | 6, 7, 8 | syl2an 493 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘𝑘) ∈ ℂ) |
10 | 9 | abscld 14023 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℝ) |
11 | 2, 10 | fsumrecl 14312 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) ∈ ℝ) |
12 | | ftalem1.5 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
13 | 11, 12 | rerpdivcld 11779 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) ∈ ℝ) |
14 | 1, 13 | syl5eqel 2692 |
. . 3
⊢ (𝜑 → 𝑇 ∈ ℝ) |
15 | | 1re 9918 |
. . 3
⊢ 1 ∈
ℝ |
16 | | ifcl 4080 |
. . 3
⊢ ((𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
17 | 14, 15, 16 | sylancl 693 |
. 2
⊢ (𝜑 → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
18 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐹 ∈ (Poly‘𝑆)) |
19 | | simprl 790 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑥 ∈ ℂ) |
20 | | ftalem.2 |
. . . . . . . . . . 11
⊢ 𝑁 = (deg‘𝐹) |
21 | 4, 20 | coeid2 23799 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (𝐹‘𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
22 | 18, 19, 21 | syl2anc 691 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹‘𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
23 | | ftalem.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
24 | 23 | nnnn0d 11228 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
25 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈
ℕ0) |
26 | | nn0uz 11598 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
27 | 25, 26 | syl6eleq 2698 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈
(ℤ≥‘0)) |
28 | | elfznn0 12302 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
29 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐴:ℕ0⟶ℂ) |
30 | 29, 8 | sylan 487 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
31 | | expcl 12740 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑥↑𝑘) ∈
ℂ) |
32 | 19, 31 | sylan 487 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝑥↑𝑘) ∈ ℂ) |
33 | 30, 32 | mulcld 9939 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
34 | 28, 33 | sylan2 490 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
35 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → (𝐴‘𝑘) = (𝐴‘𝑁)) |
36 | | oveq2 6557 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → (𝑥↑𝑘) = (𝑥↑𝑁)) |
37 | 35, 36 | oveq12d 6567 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → ((𝐴‘𝑘) · (𝑥↑𝑘)) = ((𝐴‘𝑁) · (𝑥↑𝑁))) |
38 | 27, 34, 37 | fsumm1 14324 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) + ((𝐴‘𝑁) · (𝑥↑𝑁)))) |
39 | 22, 38 | eqtrd 2644 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹‘𝑥) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) + ((𝐴‘𝑁) · (𝑥↑𝑁)))) |
40 | 39 | oveq1d 6564 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁))) = ((Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) + ((𝐴‘𝑁) · (𝑥↑𝑁))) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) |
41 | | fzfid 12634 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (0...(𝑁 − 1)) ∈ Fin) |
42 | 7, 33 | sylan2 490 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
43 | 41, 42 | fsumcl 14311 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
44 | 29, 25 | ffvelrnd 6268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐴‘𝑁) ∈ ℂ) |
45 | 19, 25 | expcld 12870 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑥↑𝑁) ∈ ℂ) |
46 | 44, 45 | mulcld 9939 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐴‘𝑁) · (𝑥↑𝑁)) ∈ ℂ) |
47 | 43, 46 | pncand 10272 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) + ((𝐴‘𝑁) · (𝑥↑𝑁))) − ((𝐴‘𝑁) · (𝑥↑𝑁))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) |
48 | 40, 47 | eqtrd 2644 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) |
49 | 48 | fveq2d 6107 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) = (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)))) |
50 | 43 | abscld 14023 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
51 | 42 | abscld 14023 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
52 | 41, 51 | fsumrecl 14312 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
53 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈
ℝ+) |
54 | 53 | rpred 11748 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ) |
55 | 19 | abscld 14023 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ) |
56 | 55, 25 | reexpcld 12887 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ) |
57 | 54, 56 | remulcld 9949 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) ∈ ℝ) |
58 | 41, 42 | fsumabs 14374 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘)))) |
59 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) ∈ ℝ) |
60 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ) |
61 | | nnm1nn0 11211 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
62 | 60, 61 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈
ℕ0) |
63 | 55, 62 | reexpcld 12887 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℝ) |
64 | 59, 63 | remulcld 9949 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈
ℝ) |
65 | 10 | adantlr 747 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℝ) |
66 | 63 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℝ) |
67 | 65, 66 | remulcld 9949 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈
ℝ) |
68 | 30, 32 | absmuld 14041 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) →
(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘)))) |
69 | 7, 68 | sylan2 490 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘)))) |
70 | 7, 32 | sylan2 490 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑥↑𝑘) ∈ ℂ) |
71 | 70 | abscld 14023 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) ∈ ℝ) |
72 | 7, 30 | sylan2 490 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘𝑘) ∈ ℂ) |
73 | 72 | absge0d 14031 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 0 ≤
(abs‘(𝐴‘𝑘))) |
74 | | absexp 13892 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝑥↑𝑘)) = ((abs‘𝑥)↑𝑘)) |
75 | 19, 7, 74 | syl2an 493 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) = ((abs‘𝑥)↑𝑘)) |
76 | 55 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘𝑥) ∈
ℝ) |
77 | 15 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ∈ ℝ) |
78 | 17 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
79 | | max1 11890 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
80 | 15, 14, 79 | sylancr 694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
81 | 80 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
82 | | simprr 792 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥)) |
83 | 77, 78, 55, 81, 82 | lelttrd 10074 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 < (abs‘𝑥)) |
84 | 77, 55, 83 | ltled 10064 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ (abs‘𝑥)) |
85 | 84 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ≤ (abs‘𝑥)) |
86 | | elfzuz3 12210 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑘)) |
87 | 86 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑘)) |
88 | 76, 85, 87 | leexp2ad 12903 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑𝑘) ≤ ((abs‘𝑥)↑(𝑁 − 1))) |
89 | 75, 88 | eqbrtrd 4605 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) ≤ ((abs‘𝑥)↑(𝑁 − 1))) |
90 | 71, 66, 65, 73, 89 | lemul2ad 10843 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘))) ≤ ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
91 | 69, 90 | eqbrtrd 4605 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
92 | 41, 51, 67, 91 | fsumle 14372 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
93 | 63 | recnd 9947 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℂ) |
94 | 65 | recnd 9947 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℂ) |
95 | 41, 93, 94 | fsummulc1 14359 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
96 | 92, 95 | breqtrrd 4611 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
97 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ∈ ℝ) |
98 | | max2 11892 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → 𝑇
≤ if(1 ≤ 𝑇, 𝑇, 1)) |
99 | 15, 14, 98 | sylancr 694 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
100 | 99 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
101 | 97, 78, 55, 100, 82 | lelttrd 10074 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 < (abs‘𝑥)) |
102 | 1, 101 | syl5eqbrr 4619 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) < (abs‘𝑥)) |
103 | 59, 55, 53 | ltdivmuld 11799 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) < (abs‘𝑥) ↔ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)))) |
104 | 102, 103 | mpbid 221 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥))) |
105 | 54, 55 | remulcld 9949 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · (abs‘𝑥)) ∈ ℝ) |
106 | 62 | nn0zd 11356 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℤ) |
107 | | 0red 9920 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 ∈ ℝ) |
108 | | 0lt1 10429 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
109 | 108 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < 1) |
110 | 107, 77, 55, 109, 83 | lttrd 10077 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < (abs‘𝑥)) |
111 | | expgt0 12755 |
. . . . . . . . . . 11
⊢
(((abs‘𝑥)
∈ ℝ ∧ (𝑁
− 1) ∈ ℤ ∧ 0 < (abs‘𝑥)) → 0 < ((abs‘𝑥)↑(𝑁 − 1))) |
112 | 55, 106, 110, 111 | syl3anc 1318 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < ((abs‘𝑥)↑(𝑁 − 1))) |
113 | | ltmul1 10752 |
. . . . . . . . . 10
⊢
((Σ𝑘 ∈
(0...(𝑁 −
1))(abs‘(𝐴‘𝑘)) ∈ ℝ ∧ (𝐸 · (abs‘𝑥)) ∈ ℝ ∧ (((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ ∧ 0 <
((abs‘𝑥)↑(𝑁 − 1)))) →
(Σ𝑘 ∈
(0...(𝑁 −
1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))) |
114 | 59, 105, 63, 112, 113 | syl112anc 1322 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))) |
115 | 104, 114 | mpbid 221 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
116 | 55 | recnd 9947 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ) |
117 | | expm1t 12750 |
. . . . . . . . . . . 12
⊢
(((abs‘𝑥)
∈ ℂ ∧ 𝑁
∈ ℕ) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥))) |
118 | 116, 60, 117 | syl2anc 691 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥))) |
119 | 93, 116 | mulcomd 9940 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))) |
120 | 118, 119 | eqtrd 2644 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))) |
121 | 120 | oveq2d 6565 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))) |
122 | 54 | recnd 9947 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℂ) |
123 | 122, 116,
93 | mulassd 9942 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))) |
124 | 121, 123 | eqtr4d 2647 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
125 | 115, 124 | breqtrrd 4611 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
126 | 52, 64, 57, 96, 125 | lelttrd 10074 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
127 | 50, 52, 57, 58, 126 | lelttrd 10074 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
128 | 49, 127 | eqbrtrd 4605 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
129 | 128 | expr 641 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
130 | 129 | ralrimiva 2949 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
131 | | breq1 4586 |
. . . . 5
⊢ (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → (𝑟 < (abs‘𝑥) ↔ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) |
132 | 131 | imbi1d 330 |
. . . 4
⊢ (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → ((𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))) ↔ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))) |
133 | 132 | ralbidv 2969 |
. . 3
⊢ (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → (∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))) ↔ ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))) |
134 | 133 | rspcev 3282 |
. 2
⊢ ((if(1
≤ 𝑇, 𝑇, 1) ∈ ℝ ∧ ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
135 | 17, 130, 134 | syl2anc 691 |
1
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |