Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ms Structured version   Visualization version   GIF version

Definition df-ms 21936
 Description: Define the (proper) class of all metric spaces. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
df-ms MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}

Detailed syntax breakdown of Definition df-ms
StepHypRef Expression
1 cmt 21933 . 2 class MetSp
2 vf . . . . . . 7 setvar 𝑓
32cv 1474 . . . . . 6 class 𝑓
4 cds 15777 . . . . . 6 class dist
53, 4cfv 5804 . . . . 5 class (dist‘𝑓)
6 cbs 15695 . . . . . . 7 class Base
73, 6cfv 5804 . . . . . 6 class (Base‘𝑓)
87, 7cxp 5036 . . . . 5 class ((Base‘𝑓) × (Base‘𝑓))
95, 8cres 5040 . . . 4 class ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))
10 cme 19553 . . . . 5 class Met
117, 10cfv 5804 . . . 4 class (Met‘(Base‘𝑓))
129, 11wcel 1977 . . 3 wff ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))
13 cxme 21932 . . 3 class ∞MetSp
1412, 2, 13crab 2900 . 2 class {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
151, 14wceq 1475 1 wff MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
 Colors of variables: wff setvar class This definition is referenced by:  isms  22064
 Copyright terms: Public domain W3C validator