Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem4 Structured version   Visualization version   GIF version

Theorem ftalem4 24602
 Description: Lemma for fta 24606: Closure of the auxiliary variables for ftalem5 24603. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem4.5 (𝜑 → (𝐹‘0) ≠ 0)
ftalem4.6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
ftalem4.7 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
ftalem4.8 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
ftalem4.9 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
Assertion
Ref Expression
ftalem4 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘   𝑆,𝑘   𝑇,𝑘   𝑘,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑇(𝑛)   𝑈(𝑘,𝑛)

Proof of Theorem ftalem4
StepHypRef Expression
1 ftalem4.6 . . . 4 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
2 ssrab2 3650 . . . . . 6 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℕ
3 nnuz 11599 . . . . . 6 ℕ = (ℤ‘1)
42, 3sseqtri 3600 . . . . 5 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1)
5 ftalem.4 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
65nnne0d 10942 . . . . . . . 8 (𝜑𝑁 ≠ 0)
7 ftalem.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘𝑆))
8 ftalem.2 . . . . . . . . . . . 12 𝑁 = (deg‘𝐹)
9 ftalem.1 . . . . . . . . . . . 12 𝐴 = (coeff‘𝐹)
108, 9dgreq0 23825 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
117, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
12 fveq2 6103 . . . . . . . . . . . 12 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
13 dgr0 23822 . . . . . . . . . . . 12 (deg‘0𝑝) = 0
1412, 13syl6eq 2660 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
158, 14syl5eq 2656 . . . . . . . . . 10 (𝐹 = 0𝑝𝑁 = 0)
1611, 15syl6bir 243 . . . . . . . . 9 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
1716necon3d 2803 . . . . . . . 8 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
186, 17mpd 15 . . . . . . 7 (𝜑 → (𝐴𝑁) ≠ 0)
19 fveq2 6103 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
2019neeq1d 2841 . . . . . . . 8 (𝑛 = 𝑁 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑁) ≠ 0))
2120elrab 3331 . . . . . . 7 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝑁 ∈ ℕ ∧ (𝐴𝑁) ≠ 0))
225, 18, 21sylanbrc 695 . . . . . 6 (𝜑𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
23 ne0i 3880 . . . . . 6 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
2422, 23syl 17 . . . . 5 (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
25 infssuzcl 11648 . . . . 5 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
264, 24, 25sylancr 694 . . . 4 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
271, 26syl5eqel 2692 . . 3 (𝜑𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
28 fveq2 6103 . . . . 5 (𝑛 = 𝐾 → (𝐴𝑛) = (𝐴𝐾))
2928neeq1d 2841 . . . 4 (𝑛 = 𝐾 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝐾) ≠ 0))
3029elrab 3331 . . 3 (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
3127, 30sylib 207 . 2 (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
32 ftalem4.7 . . . 4 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
33 plyf 23758 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
347, 33syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
35 0cn 9911 . . . . . . . 8 0 ∈ ℂ
36 ffvelrn 6265 . . . . . . . 8 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
3734, 35, 36sylancl 693 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ ℂ)
389coef3 23792 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
397, 38syl 17 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
4031simpld 474 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
4140nnnn0d 11228 . . . . . . . 8 (𝜑𝐾 ∈ ℕ0)
4239, 41ffvelrnd 6268 . . . . . . 7 (𝜑 → (𝐴𝐾) ∈ ℂ)
4331simprd 478 . . . . . . 7 (𝜑 → (𝐴𝐾) ≠ 0)
4437, 42, 43divcld 10680 . . . . . 6 (𝜑 → ((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
4544negcld 10258 . . . . 5 (𝜑 → -((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
4640nnrecred 10943 . . . . . 6 (𝜑 → (1 / 𝐾) ∈ ℝ)
4746recnd 9947 . . . . 5 (𝜑 → (1 / 𝐾) ∈ ℂ)
4845, 47cxpcld 24254 . . . 4 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾)) ∈ ℂ)
4932, 48syl5eqel 2692 . . 3 (𝜑𝑇 ∈ ℂ)
50 ftalem4.8 . . . 4 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
51 ftalem4.5 . . . . . 6 (𝜑 → (𝐹‘0) ≠ 0)
5237, 51absrpcld 14035 . . . . 5 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ+)
53 fzfid 12634 . . . . . . 7 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
54 peano2nn0 11210 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
5541, 54syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾 + 1) ∈ ℕ0)
56 elfzuz 12209 . . . . . . . . . . 11 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
57 eluznn0 11633 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ0)
5855, 56, 57syl2an 493 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0)
5939ffvelrnda 6267 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
6058, 59syldan 486 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴𝑘) ∈ ℂ)
61 expcl 12740 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
6249, 61sylan 487 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
6358, 62syldan 486 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇𝑘) ∈ ℂ)
6460, 63mulcld 9939 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · (𝑇𝑘)) ∈ ℂ)
6564abscld 14023 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
6653, 65fsumrecl 14312 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
6764absge0d 14031 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴𝑘) · (𝑇𝑘))))
6853, 65, 67fsumge0 14368 . . . . . 6 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))))
6966, 68ge0p1rpd 11778 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ+)
7052, 69rpdivcld 11765 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1)) ∈ ℝ+)
7150, 70syl5eqel 2692 . . 3 (𝜑𝑈 ∈ ℝ+)
72 ftalem4.9 . . . 4 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
73 1rp 11712 . . . . 5 1 ∈ ℝ+
74 ifcl 4080 . . . . 5 ((1 ∈ ℝ+𝑈 ∈ ℝ+) → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+)
7573, 71, 74sylancr 694 . . . 4 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+)
7672, 75syl5eqel 2692 . . 3 (𝜑𝑋 ∈ ℝ+)
7749, 71, 763jca 1235 . 2 (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+))
7831, 77jca 553 1 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  {crab 2900   ⊆ wss 3540  ∅c0 3874  ifcif 4036   class class class wbr 4583  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  infcinf 8230  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954  -cneg 10146   / cdiv 10563  ℕcn 10897  ℕ0cn0 11169  ℤ≥cuz 11563  ℝ+crp 11708  ...cfz 12197  ↑cexp 12722  abscabs 13822  Σcsu 14264  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747  ↑𝑐ccxp 24106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-ply 23748  df-coe 23750  df-dgr 23751  df-log 24107  df-cxp 24108 This theorem is referenced by:  ftalem5  24603
 Copyright terms: Public domain W3C validator