Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsplypnf Structured version   Visualization version   GIF version

Theorem signsplypnf 29953
Description: The quotient of a polynomial 𝐹 by a monic monomial of same degree 𝐺 converges to the highest coefficient of 𝐹. (Contributed by Thierry Arnoux, 18-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsplypnf.g 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
Assertion
Ref Expression
signsplypnf (𝐹 ∈ (Poly‘ℝ) → (𝐹𝑓 / 𝐺) ⇝𝑟 𝐵)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem signsplypnf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 plyf 23758 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
2 ffn 5958 . . . . 5 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
31, 2syl 17 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐹 Fn ℂ)
4 ovex 6577 . . . . . 6 (𝑥𝐷) ∈ V
54rgenw 2908 . . . . 5 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
6 signsplypnf.g . . . . . 6 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
76fnmpt 5933 . . . . 5 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → 𝐺 Fn ℝ+)
85, 7mp1i 13 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐺 Fn ℝ+)
9 cnex 9896 . . . . 5 ℂ ∈ V
109a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℂ ∈ V)
11 reex 9906 . . . . . 6 ℝ ∈ V
12 rpssre 11719 . . . . . 6 + ⊆ ℝ
1311, 12ssexi 4731 . . . . 5 + ∈ V
1413a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ∈ V)
15 ax-resscn 9872 . . . . . 6 ℝ ⊆ ℂ
1612, 15sstri 3577 . . . . 5 + ⊆ ℂ
17 sseqin2 3779 . . . . 5 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
1816, 17mpbi 219 . . . 4 (ℂ ∩ ℝ+) = ℝ+
19 signsply0.c . . . . 5 𝐶 = (coeff‘𝐹)
20 signsply0.d . . . . 5 𝐷 = (deg‘𝐹)
2119, 20coeid2 23799 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)))
226fvmpt2 6200 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ (𝑥𝐷) ∈ V) → (𝐺𝑥) = (𝑥𝐷))
234, 22mpan2 703 . . . . 5 (𝑥 ∈ ℝ+ → (𝐺𝑥) = (𝑥𝐷))
2423adantl 481 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐺𝑥) = (𝑥𝐷))
253, 8, 10, 14, 18, 21, 24offval 6802 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝐹𝑓 / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
26 fzfid 12634 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) ∈ Fin)
2716a1i 11 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℂ)
2827sselda 3568 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
29 dgrcl 23793 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
3020, 29syl5eqel 2692 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℕ0)
3130adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℕ0)
3228, 31expcld 12870 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
3319coef3 23792 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℂ)
3433ad2antrr 758 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐶:ℕ0⟶ℂ)
35 elfznn0 12302 . . . . . . . . 9 (𝑘 ∈ (0...𝐷) → 𝑘 ∈ ℕ0)
3635adantl 481 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑘 ∈ ℕ0)
3734, 36ffvelrnd 6268 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝐶𝑘) ∈ ℂ)
3828adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ∈ ℂ)
3938, 36expcld 12870 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝑘) ∈ ℂ)
4037, 39mulcld 9939 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → ((𝐶𝑘) · (𝑥𝑘)) ∈ ℂ)
41 rpne0 11724 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
4241adantl 481 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
4330nn0zd 11356 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℤ)
4443adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
4528, 42, 44expne0d 12876 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
4626, 32, 40, 45fsumdivc 14360 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))
47 fzodisj 12371 . . . . . . . 8 ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ∅
48 fzosn 12405 . . . . . . . . 9 (𝐷 ∈ ℤ → (𝐷..^(𝐷 + 1)) = {𝐷})
4948ineq2d 3776 . . . . . . . 8 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ((0..^𝐷) ∩ {𝐷}))
5047, 49syl5reqr 2659 . . . . . . 7 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ {𝐷}) = ∅)
5144, 50syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((0..^𝐷) ∩ {𝐷}) = ∅)
52 fzval3 12404 . . . . . . . . 9 (𝐷 ∈ ℤ → (0...𝐷) = (0..^(𝐷 + 1)))
5343, 52syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = (0..^(𝐷 + 1)))
54 nn0uz 11598 . . . . . . . . . 10 0 = (ℤ‘0)
5530, 54syl6eleq 2698 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ (ℤ‘0))
56 fzosplitsn 12442 . . . . . . . . 9 (𝐷 ∈ (ℤ‘0) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5755, 56syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5853, 57eqtrd 2644 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5958adantr 480 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
6032adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ∈ ℂ)
6142adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ≠ 0)
6244adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐷 ∈ ℤ)
6338, 61, 62expne0d 12876 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ≠ 0)
6440, 60, 63divcld 10680 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ ℂ)
6551, 59, 26, 64fsumsplit 14318 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6646, 65eqtrd 2644 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6766mpteq2dva 4672 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
6825, 67eqtrd 2644 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝐹𝑓 / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
69 sumex 14266 . . . . 5 Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
7069a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
71 sumex 14266 . . . . 5 Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
7271a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7312a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℝ)
74 fzofi 12635 . . . . . . 7 (0..^𝐷) ∈ Fin
7574a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → (0..^𝐷) ∈ Fin)
76 ovex 6577 . . . . . . 7 (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
7776a1i 11 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ (𝑥 ∈ ℝ+𝑘 ∈ (0..^𝐷))) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7833ad2antrr 758 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐶:ℕ0⟶ℂ)
79 elfzonn0 12380 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝐷) → 𝑘 ∈ ℕ0)
8079ad2antlr 759 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℕ0)
8178, 80ffvelrnd 6268 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ ℂ)
8228adantlr 747 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
8382, 80expcld 12870 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑘) ∈ ℂ)
8432adantlr 747 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
8541adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
8644adantlr 747 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
8782, 85, 86expne0d 12876 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
8881, 83, 84, 87divassd 10715 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷))))
8988mpteq2dva 4672 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))))
90 fvex 6113 . . . . . . . . . 10 (𝐶𝑘) ∈ V
9190a1i 11 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ V)
92 ovex 6577 . . . . . . . . . 10 ((𝑥𝑘) / (𝑥𝐷)) ∈ V
9392a1i 11 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑘) / (𝑥𝐷)) ∈ V)
9433adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐶:ℕ0⟶ℂ)
9579adantl 481 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℕ0)
9694, 95ffvelrnd 6268 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐶𝑘) ∈ ℂ)
97 rlimconst 14123 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (𝐶𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9812, 96, 97sylancr 694 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9980nn0zd 11356 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℤ)
10086, 99zsubcld 11363 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐷𝑘) ∈ ℤ)
10182, 85, 100cxpexpzd 24257 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐷𝑘)) = (𝑥↑(𝐷𝑘)))
102101oveq2d 6565 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (1 / (𝑥↑(𝐷𝑘))))
10382, 85, 100expnegd 12877 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (1 / (𝑥↑(𝐷𝑘))))
10486zcnd 11359 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℂ)
10580nn0cnd 11230 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℂ)
106104, 105negsubdi2d 10287 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → -(𝐷𝑘) = (𝑘𝐷))
107106oveq2d 6565 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (𝑥↑(𝑘𝐷)))
108102, 103, 1073eqtr2d 2650 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (𝑥↑(𝑘𝐷)))
10982, 85, 86, 99expsubd 12881 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑(𝑘𝐷)) = ((𝑥𝑘) / (𝑥𝐷)))
110108, 109eqtrd 2644 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = ((𝑥𝑘) / (𝑥𝐷)))
111110mpteq2dva 4672 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) = (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))))
11295nn0red 11229 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℝ)
11330adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℕ0)
114113nn0red 11229 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℝ)
115 elfzolt2 12348 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐷) → 𝑘 < 𝐷)
116115adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 < 𝐷)
117 difrp 11744 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑘 < 𝐷 ↔ (𝐷𝑘) ∈ ℝ+))
118117biimpa 500 . . . . . . . . . . . 12 (((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑘 < 𝐷) → (𝐷𝑘) ∈ ℝ+)
119112, 114, 116, 118syl21anc 1317 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐷𝑘) ∈ ℝ+)
120 cxplim 24498 . . . . . . . . . . 11 ((𝐷𝑘) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
121119, 120syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
122111, 121eqbrtrrd 4607 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))) ⇝𝑟 0)
12391, 93, 98, 122rlimmul 14223 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 ((𝐶𝑘) · 0))
12496mul01d 10114 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → ((𝐶𝑘) · 0) = 0)
125123, 124breqtrd 4609 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 0)
12689, 125eqbrtrd 4605 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12773, 75, 77, 126fsumrlim 14384 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 Σ𝑘 ∈ (0..^𝐷)0)
12875olcd 407 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin))
129 sumz 14300 . . . . . 6 (((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
130128, 129syl 17 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
131127, 130breqtrd 4609 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
13233, 30ffvelrnd 6268 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → (𝐶𝐷) ∈ ℂ)
133132adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐶𝐷) ∈ ℂ)
134133, 32mulcld 9939 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐶𝐷) · (𝑥𝐷)) ∈ ℂ)
135134, 32, 45divcld 10680 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ)
136 fveq2 6103 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐶𝑘) = (𝐶𝐷))
137 oveq2 6557 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝑥𝑘) = (𝑥𝐷))
138136, 137oveq12d 6567 . . . . . . . . . 10 (𝑘 = 𝐷 → ((𝐶𝑘) · (𝑥𝑘)) = ((𝐶𝐷) · (𝑥𝐷)))
139138oveq1d 6564 . . . . . . . . 9 (𝑘 = 𝐷 → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
140139sumsn 14319 . . . . . . . 8 ((𝐷 ∈ ℕ0 ∧ (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
14131, 135, 140syl2anc 691 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
142133, 32, 45divcan4d 10686 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) = (𝐶𝐷))
143141, 142eqtrd 2644 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (𝐶𝐷))
144143mpteq2dva 4672 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)))
145 rlimconst 14123 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (𝐶𝐷) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
14612, 132, 145sylancr 694 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
147144, 146eqbrtrd 4605 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 (𝐶𝐷))
14870, 72, 131, 147rlimadd 14221 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 (0 + (𝐶𝐷)))
149132addid2d 10116 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = (𝐶𝐷))
150 signsply0.b . . . 4 𝐵 = (𝐶𝐷)
151149, 150syl6eqr 2662 . . 3 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = 𝐵)
152148, 151breqtrd 4609 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 𝐵)
15368, 152eqbrtrd 4605 1 (𝐹 ∈ (Poly‘ℝ) → (𝐹𝑓 / 𝐺) ⇝𝑟 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cmpt 4643   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  ..^cfzo 12334  cexp 12722  𝑟 crli 14064  Σcsu 14264  Polycply 23744  coeffccoe 23746  degcdgr 23747  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-ply 23748  df-coe 23750  df-dgr 23751  df-log 24107  df-cxp 24108
This theorem is referenced by:  signsply0  29954
  Copyright terms: Public domain W3C validator