Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsplypnf Structured version   Unicode version

Theorem signsplypnf 28380
Description: The quotient of a polynomial  F by a monic monomial of same degree  G converges to the highest coefficient of  F. (Contributed by Thierry Arnoux, 18-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d  |-  D  =  (deg `  F )
signsply0.c  |-  C  =  (coeff `  F )
signsply0.b  |-  B  =  ( C `  D
)
signsplypnf.g  |-  G  =  ( x  e.  RR+  |->  ( x ^ D
) )
Assertion
Ref Expression
signsplypnf  |-  ( F  e.  (Poly `  RR )  ->  ( F  oF  /  G )  ~~> r  B )
Distinct variable groups:    x, C    x, D    x, F    x, G
Allowed substitution hint:    B( x)

Proof of Theorem signsplypnf
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 plyf 22468 . . . . 5  |-  ( F  e.  (Poly `  RR )  ->  F : CC --> CC )
2 ffn 5721 . . . . 5  |-  ( F : CC --> CC  ->  F  Fn  CC )
31, 2syl 16 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  F  Fn  CC )
4 ovex 6309 . . . . . 6  |-  ( x ^ D )  e. 
_V
54rgenw 2804 . . . . 5  |-  A. x  e.  RR+  ( x ^ D )  e.  _V
6 signsplypnf.g . . . . . 6  |-  G  =  ( x  e.  RR+  |->  ( x ^ D
) )
76fnmpt 5697 . . . . 5  |-  ( A. x  e.  RR+  ( x ^ D )  e. 
_V  ->  G  Fn  RR+ )
85, 7mp1i 12 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  G  Fn  RR+ )
9 cnex 9576 . . . . 5  |-  CC  e.  _V
109a1i 11 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  CC  e.  _V )
11 reex 9586 . . . . . 6  |-  RR  e.  _V
12 rpssre 11239 . . . . . 6  |-  RR+  C_  RR
1311, 12ssexi 4582 . . . . 5  |-  RR+  e.  _V
1413a1i 11 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  RR+  e.  _V )
15 ax-resscn 9552 . . . . . 6  |-  RR  C_  CC
1612, 15sstri 3498 . . . . 5  |-  RR+  C_  CC
17 dfss1 3688 . . . . 5  |-  ( RR+  C_  CC  <->  ( CC  i^i  RR+ )  =  RR+ )
1816, 17mpbi 208 . . . 4  |-  ( CC 
i^i  RR+ )  =  RR+
19 signsply0.c . . . . 5  |-  C  =  (coeff `  F )
20 signsply0.d . . . . 5  |-  D  =  (deg `  F )
2119, 20coeid2 22509 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  CC )  ->  ( F `  x )  =  sum_ k  e.  ( 0 ... D ) ( ( C `  k )  x.  (
x ^ k ) ) )
226fvmpt2 5948 . . . . . 6  |-  ( ( x  e.  RR+  /\  (
x ^ D )  e.  _V )  -> 
( G `  x
)  =  ( x ^ D ) )
234, 22mpan2 671 . . . . 5  |-  ( x  e.  RR+  ->  ( G `
 x )  =  ( x ^ D
) )
2423adantl 466 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  ( G `  x )  =  ( x ^ D ) )
253, 8, 10, 14, 18, 21, 24offval 6532 . . 3  |-  ( F  e.  (Poly `  RR )  ->  ( F  oF  /  G )  =  ( x  e.  RR+  |->  ( sum_ k  e.  ( 0 ... D
) ( ( C `
 k )  x.  ( x ^ k
) )  /  (
x ^ D ) ) ) )
26 fzfid 12062 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  (
0 ... D )  e. 
Fin )
2716a1i 11 . . . . . . . 8  |-  ( F  e.  (Poly `  RR )  ->  RR+  C_  CC )
2827sselda 3489 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  x  e.  CC )
29 dgrcl 22503 . . . . . . . . 9  |-  ( F  e.  (Poly `  RR )  ->  (deg `  F
)  e.  NN0 )
3020, 29syl5eqel 2535 . . . . . . . 8  |-  ( F  e.  (Poly `  RR )  ->  D  e.  NN0 )
3130adantr 465 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  D  e.  NN0 )
3228, 31expcld 12289 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  (
x ^ D )  e.  CC )
3319coef3 22502 . . . . . . . . 9  |-  ( F  e.  (Poly `  RR )  ->  C : NN0 --> CC )
3433ad2antrr 725 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  C : NN0 --> CC )
35 elfznn0 11779 . . . . . . . . 9  |-  ( k  e.  ( 0 ... D )  ->  k  e.  NN0 )
3635adantl 466 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  k  e.  NN0 )
3734, 36ffvelrnd 6017 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  ( C `  k )  e.  CC )
3828adantr 465 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  x  e.  CC )
3938, 36expcld 12289 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  (
x ^ k )  e.  CC )
4037, 39mulcld 9619 . . . . . 6  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  (
( C `  k
)  x.  ( x ^ k ) )  e.  CC )
41 rpne0 11244 . . . . . . . 8  |-  ( x  e.  RR+  ->  x  =/=  0 )
4241adantl 466 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  x  =/=  0 )
4330nn0zd 10972 . . . . . . . 8  |-  ( F  e.  (Poly `  RR )  ->  D  e.  ZZ )
4443adantr 465 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  D  e.  ZZ )
4528, 42, 44expne0d 12295 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  (
x ^ D )  =/=  0 )
4626, 32, 40, 45fsumdivc 13580 . . . . 5  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  ( sum_ k  e.  ( 0 ... D ) ( ( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) )  = 
sum_ k  e.  ( 0 ... D ) ( ( ( C `
 k )  x.  ( x ^ k
) )  /  (
x ^ D ) ) )
47 fzodisj 11838 . . . . . . . 8  |-  ( ( 0..^ D )  i^i  ( D..^ ( D  +  1 ) ) )  =  (/)
48 fzosn 11865 . . . . . . . . 9  |-  ( D  e.  ZZ  ->  ( D..^ ( D  +  1 ) )  =  { D } )
4948ineq2d 3685 . . . . . . . 8  |-  ( D  e.  ZZ  ->  (
( 0..^ D )  i^i  ( D..^ ( D  +  1 ) ) )  =  ( ( 0..^ D )  i^i  { D }
) )
5047, 49syl5reqr 2499 . . . . . . 7  |-  ( D  e.  ZZ  ->  (
( 0..^ D )  i^i  { D }
)  =  (/) )
5144, 50syl 16 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  (
( 0..^ D )  i^i  { D }
)  =  (/) )
52 fzval3 11864 . . . . . . . . 9  |-  ( D  e.  ZZ  ->  (
0 ... D )  =  ( 0..^ ( D  +  1 ) ) )
5343, 52syl 16 . . . . . . . 8  |-  ( F  e.  (Poly `  RR )  ->  ( 0 ... D )  =  ( 0..^ ( D  + 
1 ) ) )
54 nn0uz 11124 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
5530, 54syl6eleq 2541 . . . . . . . . 9  |-  ( F  e.  (Poly `  RR )  ->  D  e.  (
ZZ>= `  0 ) )
56 fzosplitsn 11897 . . . . . . . . 9  |-  ( D  e.  ( ZZ>= `  0
)  ->  ( 0..^ ( D  +  1 ) )  =  ( ( 0..^ D )  u.  { D }
) )
5755, 56syl 16 . . . . . . . 8  |-  ( F  e.  (Poly `  RR )  ->  ( 0..^ ( D  +  1 ) )  =  ( ( 0..^ D )  u. 
{ D } ) )
5853, 57eqtrd 2484 . . . . . . 7  |-  ( F  e.  (Poly `  RR )  ->  ( 0 ... D )  =  ( ( 0..^ D )  u.  { D }
) )
5958adantr 465 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  (
0 ... D )  =  ( ( 0..^ D )  u.  { D } ) )
6032adantr 465 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  (
x ^ D )  e.  CC )
6142adantr 465 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  x  =/=  0 )
6244adantr 465 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  D  e.  ZZ )
6338, 61, 62expne0d 12295 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  (
x ^ D )  =/=  0 )
6440, 60, 63divcld 10326 . . . . . 6  |-  ( ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... D
) )  ->  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  e.  CC )
6551, 59, 26, 64fsumsplit 13541 . . . . 5  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 0 ... D
) ( ( ( C `  k )  x.  ( x ^
k ) )  / 
( x ^ D
) )  =  (
sum_ k  e.  ( 0..^ D ) ( ( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  +  sum_ k  e.  { D }  ( (
( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) ) ) )
6646, 65eqtrd 2484 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  ( sum_ k  e.  ( 0 ... D ) ( ( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) )  =  ( sum_ k  e.  ( 0..^ D ) ( ( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  +  sum_ k  e.  { D }  ( (
( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) ) ) )
6766mpteq2dva 4523 . . 3  |-  ( F  e.  (Poly `  RR )  ->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 0 ... D
) ( ( C `
 k )  x.  ( x ^ k
) )  /  (
x ^ D ) ) )  =  ( x  e.  RR+  |->  ( sum_ k  e.  ( 0..^ D ) ( ( ( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) )  + 
sum_ k  e.  { D }  ( (
( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) ) ) ) )
6825, 67eqtrd 2484 . 2  |-  ( F  e.  (Poly `  RR )  ->  ( F  oF  /  G )  =  ( x  e.  RR+  |->  ( sum_ k  e.  ( 0..^ D ) ( ( ( C `
 k )  x.  ( x ^ k
) )  /  (
x ^ D ) )  +  sum_ k  e.  { D }  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) ) ) ) )
69 sumex 13489 . . . . 5  |-  sum_ k  e.  ( 0..^ D ) ( ( ( C `
 k )  x.  ( x ^ k
) )  /  (
x ^ D ) )  e.  _V
7069a1i 11 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 0..^ D ) ( ( ( C `
 k )  x.  ( x ^ k
) )  /  (
x ^ D ) )  e.  _V )
71 sumex 13489 . . . . 5  |-  sum_ k  e.  { D }  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  e.  _V
7271a1i 11 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  sum_ k  e.  { D }  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  e.  _V )
7312a1i 11 . . . . . 6  |-  ( F  e.  (Poly `  RR )  ->  RR+  C_  RR )
74 fzofi 12063 . . . . . . 7  |-  ( 0..^ D )  e.  Fin
7574a1i 11 . . . . . 6  |-  ( F  e.  (Poly `  RR )  ->  ( 0..^ D )  e.  Fin )
76 ovex 6309 . . . . . . 7  |-  ( ( ( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) )  e. 
_V
7776a1i 11 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  (
x  e.  RR+  /\  k  e.  ( 0..^ D ) ) )  ->  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  e.  _V )
7833ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  C : NN0
--> CC )
79 elfzonn0 11846 . . . . . . . . . . 11  |-  ( k  e.  ( 0..^ D )  ->  k  e.  NN0 )
8079ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  k  e. 
NN0 )
8178, 80ffvelrnd 6017 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( C `
 k )  e.  CC )
8228adantlr 714 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  x  e.  CC )
8382, 80expcld 12289 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( x ^ k )  e.  CC )
8432adantlr 714 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( x ^ D )  e.  CC )
8541adantl 466 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  x  =/=  0 )
8644adantlr 714 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  D  e.  ZZ )
8782, 85, 86expne0d 12295 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( x ^ D )  =/=  0 )
8881, 83, 84, 87divassd 10361 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( ( ( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) )  =  ( ( C `  k )  x.  (
( x ^ k
)  /  ( x ^ D ) ) ) )
8988mpteq2dva 4523 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( x  e.  RR+  |->  ( ( ( C `  k )  x.  ( x ^
k ) )  / 
( x ^ D
) ) )  =  ( x  e.  RR+  |->  ( ( C `  k )  x.  (
( x ^ k
)  /  ( x ^ D ) ) ) ) )
90 fvex 5866 . . . . . . . . . 10  |-  ( C `
 k )  e. 
_V
9190a1i 11 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( C `
 k )  e. 
_V )
92 ovex 6309 . . . . . . . . . 10  |-  ( ( x ^ k )  /  ( x ^ D ) )  e. 
_V
9392a1i 11 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( ( x ^ k )  /  ( x ^ D ) )  e. 
_V )
9433adantr 465 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  C : NN0
--> CC )
9579adantl 466 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  k  e.  NN0 )
9694, 95ffvelrnd 6017 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( C `  k )  e.  CC )
97 rlimconst 13346 . . . . . . . . . 10  |-  ( (
RR+  C_  RR  /\  ( C `  k )  e.  CC )  ->  (
x  e.  RR+  |->  ( C `
 k ) )  ~~> r  ( C `  k ) )
9812, 96, 97sylancr 663 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( x  e.  RR+  |->  ( C `  k ) )  ~~> r  ( C `  k ) )
9980nn0zd 10972 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  k  e.  ZZ )
10086, 99zsubcld 10979 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( D  -  k )  e.  ZZ )
10182, 85, 100cxpexpzd 22964 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( x  ^c  ( D  -  k ) )  =  ( x ^
( D  -  k
) ) )
102101oveq2d 6297 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( 1  /  ( x  ^c  ( D  -  k ) ) )  =  ( 1  / 
( x ^ ( D  -  k )
) ) )
10382, 85, 100expnegd 12296 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( x ^ -u ( D  -  k ) )  =  ( 1  / 
( x ^ ( D  -  k )
) ) )
10486zcnd 10975 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  D  e.  CC )
10580nn0cnd 10860 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  k  e.  CC )
106104, 105negsubdi2d 9952 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  -u ( D  -  k )  =  ( k  -  D ) )
107106oveq2d 6297 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( x ^ -u ( D  -  k ) )  =  ( x ^
( k  -  D
) ) )
108102, 103, 1073eqtr2d 2490 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( 1  /  ( x  ^c  ( D  -  k ) ) )  =  ( x ^
( k  -  D
) ) )
10982, 85, 86, 99expsubd 12300 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( x ^ ( k  -  D ) )  =  ( ( x ^
k )  /  (
x ^ D ) ) )
110108, 109eqtrd 2484 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  /\  x  e.  RR+ )  ->  ( 1  /  ( x  ^c  ( D  -  k ) ) )  =  ( ( x ^ k )  / 
( x ^ D
) ) )
111110mpteq2dva 4523 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( x  e.  RR+  |->  ( 1  / 
( x  ^c 
( D  -  k
) ) ) )  =  ( x  e.  RR+  |->  ( ( x ^ k )  / 
( x ^ D
) ) ) )
11295nn0red 10859 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  k  e.  RR )
11330adantr 465 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  D  e.  NN0 )
114113nn0red 10859 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  D  e.  RR )
115 elfzolt2 11816 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0..^ D )  ->  k  <  D )
116115adantl 466 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  k  <  D )
117 difrp 11262 . . . . . . . . . . . . 13  |-  ( ( k  e.  RR  /\  D  e.  RR )  ->  ( k  <  D  <->  ( D  -  k )  e.  RR+ ) )
118117biimpa 484 . . . . . . . . . . . 12  |-  ( ( ( k  e.  RR  /\  D  e.  RR )  /\  k  <  D
)  ->  ( D  -  k )  e.  RR+ )
119112, 114, 116, 118syl21anc 1228 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( D  -  k )  e.  RR+ )
120 cxplim 23173 . . . . . . . . . . 11  |-  ( ( D  -  k )  e.  RR+  ->  ( x  e.  RR+  |->  ( 1  /  ( x  ^c  ( D  -  k ) ) ) )  ~~> r  0 )
121119, 120syl 16 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( x  e.  RR+  |->  ( 1  / 
( x  ^c 
( D  -  k
) ) ) )  ~~> r  0 )
122111, 121eqbrtrrd 4459 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( x  e.  RR+  |->  ( ( x ^ k )  / 
( x ^ D
) ) )  ~~> r  0 )
12391, 93, 98, 122rlimmul 13446 . . . . . . . 8  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( x  e.  RR+  |->  ( ( C `
 k )  x.  ( ( x ^
k )  /  (
x ^ D ) ) ) )  ~~> r  ( ( C `  k
)  x.  0 ) )
12496mul01d 9782 . . . . . . . 8  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( ( C `  k )  x.  0 )  =  0 )
125123, 124breqtrd 4461 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( x  e.  RR+  |->  ( ( C `
 k )  x.  ( ( x ^
k )  /  (
x ^ D ) ) ) )  ~~> r  0 )
12689, 125eqbrtrd 4457 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  k  e.  ( 0..^ D ) )  ->  ( x  e.  RR+  |->  ( ( ( C `  k )  x.  ( x ^
k ) )  / 
( x ^ D
) ) )  ~~> r  0 )
12773, 75, 77, 126fsumrlim 13604 . . . . 5  |-  ( F  e.  (Poly `  RR )  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 0..^ D ) ( ( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) ) )  ~~> r  sum_ k  e.  ( 0..^ D ) 0 )
12875olcd 393 . . . . . 6  |-  ( F  e.  (Poly `  RR )  ->  ( ( 0..^ D )  C_  ( ZZ>=
`  0 )  \/  ( 0..^ D )  e.  Fin ) )
129 sumz 13523 . . . . . 6  |-  ( ( ( 0..^ D ) 
C_  ( ZZ>= `  0
)  \/  ( 0..^ D )  e.  Fin )  ->  sum_ k  e.  ( 0..^ D ) 0  =  0 )
130128, 129syl 16 . . . . 5  |-  ( F  e.  (Poly `  RR )  ->  sum_ k  e.  ( 0..^ D ) 0  =  0 )
131127, 130breqtrd 4461 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 0..^ D ) ( ( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) ) )  ~~> r  0 )
13233, 30ffvelrnd 6017 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  RR )  ->  ( C `  D )  e.  CC )
133132adantr 465 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  ( C `  D )  e.  CC )
134133, 32mulcld 9619 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  (
( C `  D
)  x.  ( x ^ D ) )  e.  CC )
135134, 32, 45divcld 10326 . . . . . . . 8  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  (
( ( C `  D )  x.  (
x ^ D ) )  /  ( x ^ D ) )  e.  CC )
136 fveq2 5856 . . . . . . . . . . 11  |-  ( k  =  D  ->  ( C `  k )  =  ( C `  D ) )
137 oveq2 6289 . . . . . . . . . . 11  |-  ( k  =  D  ->  (
x ^ k )  =  ( x ^ D ) )
138136, 137oveq12d 6299 . . . . . . . . . 10  |-  ( k  =  D  ->  (
( C `  k
)  x.  ( x ^ k ) )  =  ( ( C `
 D )  x.  ( x ^ D
) ) )
139138oveq1d 6296 . . . . . . . . 9  |-  ( k  =  D  ->  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  =  ( ( ( C `  D )  x.  ( x ^ D ) )  / 
( x ^ D
) ) )
140139sumsn 13542 . . . . . . . 8  |-  ( ( D  e.  NN0  /\  ( ( ( C `
 D )  x.  ( x ^ D
) )  /  (
x ^ D ) )  e.  CC )  ->  sum_ k  e.  { D }  ( (
( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) )  =  ( ( ( C `
 D )  x.  ( x ^ D
) )  /  (
x ^ D ) ) )
14131, 135, 140syl2anc 661 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  sum_ k  e.  { D }  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  =  ( ( ( C `  D )  x.  ( x ^ D ) )  / 
( x ^ D
) ) )
142133, 32, 45divcan4d 10332 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  (
( ( C `  D )  x.  (
x ^ D ) )  /  ( x ^ D ) )  =  ( C `  D ) )
143141, 142eqtrd 2484 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  x  e.  RR+ )  ->  sum_ k  e.  { D }  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) )  =  ( C `  D ) )
144143mpteq2dva 4523 . . . . 5  |-  ( F  e.  (Poly `  RR )  ->  ( x  e.  RR+  |->  sum_ k  e.  { D }  ( (
( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) ) )  =  ( x  e.  RR+  |->  ( C `  D ) ) )
145 rlimconst 13346 . . . . . 6  |-  ( (
RR+  C_  RR  /\  ( C `  D )  e.  CC )  ->  (
x  e.  RR+  |->  ( C `
 D ) )  ~~> r  ( C `  D ) )
14612, 132, 145sylancr 663 . . . . 5  |-  ( F  e.  (Poly `  RR )  ->  ( x  e.  RR+  |->  ( C `  D ) )  ~~> r  ( C `  D ) )
147144, 146eqbrtrd 4457 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  ( x  e.  RR+  |->  sum_ k  e.  { D }  ( (
( C `  k
)  x.  ( x ^ k ) )  /  ( x ^ D ) ) )  ~~> r  ( C `  D ) )
14870, 72, 131, 147rlimadd 13444 . . 3  |-  ( F  e.  (Poly `  RR )  ->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 0..^ D ) ( ( ( C `
 k )  x.  ( x ^ k
) )  /  (
x ^ D ) )  +  sum_ k  e.  { D }  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) ) ) )  ~~> r  ( 0  +  ( C `
 D ) ) )
149132addid2d 9784 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  ( 0  +  ( C `  D
) )  =  ( C `  D ) )
150 signsply0.b . . . 4  |-  B  =  ( C `  D
)
151149, 150syl6eqr 2502 . . 3  |-  ( F  e.  (Poly `  RR )  ->  ( 0  +  ( C `  D
) )  =  B )
152148, 151breqtrd 4461 . 2  |-  ( F  e.  (Poly `  RR )  ->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 0..^ D ) ( ( ( C `
 k )  x.  ( x ^ k
) )  /  (
x ^ D ) )  +  sum_ k  e.  { D }  (
( ( C `  k )  x.  (
x ^ k ) )  /  ( x ^ D ) ) ) )  ~~> r  B
)
15368, 152eqbrtrd 4457 1  |-  ( F  e.  (Poly `  RR )  ->  ( F  oF  /  G )  ~~> r  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   _Vcvv 3095    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   {csn 4014   class class class wbr 4437    |-> cmpt 4495    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    oFcof 6523   Fincfn 7518   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500    < clt 9631    - cmin 9810   -ucneg 9811    / cdiv 10212   NN0cn0 10801   ZZcz 10870   ZZ>=cuz 11090   RR+crp 11229   ...cfz 11681  ..^cfzo 11803   ^cexp 12145    ~~> r crli 13287   sum_csu 13487  Polycply 22454  coeffccoe 22456  degcdgr 22457    ^c ccxp 22815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-ioc 11543  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-fl 11908  df-mod 11976  df-seq 12087  df-exp 12146  df-fac 12333  df-bc 12360  df-hash 12385  df-shft 12879  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488  df-ef 13681  df-sin 13683  df-cos 13684  df-pi 13686  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-hom 14598  df-cco 14599  df-rest 14697  df-topn 14698  df-0g 14716  df-gsum 14717  df-topgen 14718  df-pt 14719  df-prds 14722  df-xrs 14776  df-qtop 14781  df-imas 14782  df-xps 14784  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-mulg 15934  df-cntz 16229  df-cmn 16674  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-fbas 18290  df-fg 18291  df-cnfld 18295  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cld 19393  df-ntr 19394  df-cls 19395  df-nei 19472  df-lp 19510  df-perf 19511  df-cn 19601  df-cnp 19602  df-haus 19689  df-tx 19936  df-hmeo 20129  df-fil 20220  df-fm 20312  df-flim 20313  df-flf 20314  df-xms 20696  df-ms 20697  df-tms 20698  df-cncf 21255  df-0p 21950  df-limc 22143  df-dv 22144  df-ply 22458  df-coe 22460  df-dgr 22461  df-log 22816  df-cxp 22817
This theorem is referenced by:  signsply0  28381
  Copyright terms: Public domain W3C validator