Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cos Structured version   Visualization version   GIF version

Definition df-cos 14640
 Description: Define the cosine function. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
df-cos cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))

Detailed syntax breakdown of Definition df-cos
StepHypRef Expression
1 ccos 14634 . 2 class cos
2 vx . . 3 setvar 𝑥
3 cc 9813 . . 3 class
4 ci 9817 . . . . . . 7 class i
52cv 1474 . . . . . . 7 class 𝑥
6 cmul 9820 . . . . . . 7 class ·
74, 5, 6co 6549 . . . . . 6 class (i · 𝑥)
8 ce 14631 . . . . . 6 class exp
97, 8cfv 5804 . . . . 5 class (exp‘(i · 𝑥))
104cneg 10146 . . . . . . 7 class -i
1110, 5, 6co 6549 . . . . . 6 class (-i · 𝑥)
1211, 8cfv 5804 . . . . 5 class (exp‘(-i · 𝑥))
13 caddc 9818 . . . . 5 class +
149, 12, 13co 6549 . . . 4 class ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))
15 c2 10947 . . . 4 class 2
16 cdiv 10563 . . . 4 class /
1714, 15, 16co 6549 . . 3 class (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)
182, 3, 17cmpt 4643 . 2 class (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
191, 18wceq 1475 1 wff cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
 Colors of variables: wff setvar class This definition is referenced by:  cosval  14692  cosf  14694  dvsincos  23548  coscn  24003
 Copyright terms: Public domain W3C validator