Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcl Structured version   Visualization version   GIF version

Theorem dgrcl 23793
 Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
dgrcl (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)

Proof of Theorem dgrcl
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (coeff‘𝐹) = (coeff‘𝐹)
21dgrval 23788 . 2 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup(((coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ))
3 nn0ssre 11173 . . . . 5 0 ⊆ ℝ
4 ltso 9997 . . . . 5 < Or ℝ
5 soss 4977 . . . . 5 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
63, 4, 5mp2 9 . . . 4 < Or ℕ0
76a1i 11 . . 3 (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0)
8 0zd 11266 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
9 cnvimass 5404 . . . . 5 ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ dom (coeff‘𝐹)
101coef 23790 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
11 fdm 5964 . . . . . 6 ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) → dom (coeff‘𝐹) = ℕ0)
1210, 11syl 17 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → dom (coeff‘𝐹) = ℕ0)
139, 12syl5sseq 3616 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0)
141dgrlem 23789 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛))
1514simprd 478 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛)
16 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
1716uzsupss 11656 . . . 4 ((0 ∈ ℤ ∧ ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦)))
188, 13, 15, 17syl3anc 1318 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦)))
197, 18supcl 8247 . 2 (𝐹 ∈ (Poly‘𝑆) → sup(((coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ) ∈ ℕ0)
202, 19eqeltrd 2688 1 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ∖ cdif 3537   ∪ cun 3538   ⊆ wss 3540  {csn 4125   class class class wbr 4583   Or wor 4958  ◡ccnv 5037  dom cdm 5038   “ cima 5041  ⟶wf 5800  ‘cfv 5804  supcsup 8229  ℂcc 9813  ℝcr 9814  0cc0 9815   < clt 9953   ≤ cle 9954  ℕ0cn0 11169  ℤcz 11254  Polycply 23744  coeffccoe 23746  degcdgr 23747 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751 This theorem is referenced by:  dgrub  23794  dgrub2  23795  dgrlb  23796  coeidlem  23797  plyco  23801  dgreq  23804  0dgr  23805  dgrnznn  23807  coefv0  23808  coeaddlem  23809  coemullem  23810  coemulhi  23814  dgreq0  23825  dgrlt  23826  dgradd2  23828  dgrmul  23830  dgrmulc  23831  dgrcolem2  23834  dgrco  23835  plycj  23837  coecj  23838  plymul0or  23840  dvply2g  23844  plydivlem3  23854  plydivlem4  23855  plydivex  23856  plydiveu  23857  plyrem  23864  fta1lem  23866  fta1  23867  quotcan  23868  vieta1lem1  23869  vieta1lem2  23870  elqaalem2  23879  elqaalem3  23880  aareccl  23885  aannenlem1  23887  aannenlem2  23888  aalioulem1  23891  aaliou2  23899  taylply2  23926  signsplypnf  29953  signsply0  29954  dgraa0p  36738  mpaaeu  36739  elaa2lem  39126  etransclem46  39173  etransclem47  39174  etransclem48  39175
 Copyright terms: Public domain W3C validator