MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expne0d Structured version   Visualization version   GIF version

Theorem expne0d 12876
Description: Nonnegative integer exponentiation is nonzero if its mantissa is nonzero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
expcld.1 (𝜑𝐴 ∈ ℂ)
sqrecd.1 (𝜑𝐴 ≠ 0)
expclzd.3 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
expne0d (𝜑 → (𝐴𝑁) ≠ 0)

Proof of Theorem expne0d
StepHypRef Expression
1 expcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 sqrecd.1 . 2 (𝜑𝐴 ≠ 0)
3 expclzd.3 . 2 (𝜑𝑁 ∈ ℤ)
4 expne0i 12754 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ≠ 0)
51, 2, 3, 4syl3anc 1318 1 (𝜑 → (𝐴𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815  cz 11254  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723
This theorem is referenced by:  absexpz  13893  0.999...  14451  0.999...OLD  14452  bitsfzo  14995  bitsmod  14996  bitsinv1lem  15001  bitsuz  15034  pcexp  15402  dvdsprmpweqle  15428  pcaddlem  15430  pcadd  15431  qexpz  15443  dvexp3  23545  plyeq0lem  23770  aareccl  23885  taylthlem2  23932  root1cj  24297  cxpeq  24298  dcubic1lem  24370  dcubic2  24371  cubic2  24375  cubic  24376  lgamgulmlem4  24558  basellem4  24610  basellem8  24614  lgseisenlem1  24900  lgseisenlem2  24901  lgsquadlem1  24905  znsqcld  28900  dya2icoseg  29666  dya2iocucvr  29673  omssubadd  29689  oddpwdc  29743  signsplypnf  29953  signsply0  29954  knoppndvlem7  31679  knoppndvlem17  31689  rmxyneg  36503  radcnvrat  37535  dvrecg  38800  dvdivbd  38813  iblsplit  38858  wallispi2lem1  38964  wallispi2lem2  38965  wallispi2  38966  stirlinglem3  38969  stirlinglem4  38970  stirlinglem7  38973  stirlinglem8  38974  stirlinglem10  38976  stirlinglem13  38979  stirlinglem14  38980  stirlinglem15  38981  fourierdlem56  39055  fourierdlem57  39056  elaa2lem  39126  sge0ad2en  39324  ovnsubaddlem1  39460  fldivexpfllog2  42157  nn0digval  42192  dignnld  42195  dig2nn1st  42197  dig2bits  42206  dignn0flhalflem1  42207  dignn0flhalflem2  42208  dignn0ehalf  42209
  Copyright terms: Public domain W3C validator