MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aareccl Structured version   Visualization version   GIF version

Theorem aareccl 23885
Description: The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
aareccl ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸)

Proof of Theorem aareccl
Dummy variables 𝑓 𝑔 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaa 23875 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
21simprbi 479 . . 3 (𝐴 ∈ 𝔸 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
32adantr 480 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
4 aacn 23876 . . . . 5 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
5 reccl 10571 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
64, 5sylan 487 . . . 4 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
76adantr 480 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (1 / 𝐴) ∈ ℂ)
8 zsscn 11262 . . . . . . 7 ℤ ⊆ ℂ
98a1i 11 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ℤ ⊆ ℂ)
10 simprl 790 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
11 eldifsn 4260 . . . . . . . . 9 (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ (𝑓 ∈ (Poly‘ℤ) ∧ 𝑓 ≠ 0𝑝))
1210, 11sylib 207 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ (Poly‘ℤ) ∧ 𝑓 ≠ 0𝑝))
1312simpld 474 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ (Poly‘ℤ))
14 dgrcl 23793 . . . . . . 7 (𝑓 ∈ (Poly‘ℤ) → (deg‘𝑓) ∈ ℕ0)
1513, 14syl 17 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℕ0)
1613adantr 480 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑓 ∈ (Poly‘ℤ))
17 0z 11265 . . . . . . . 8 0 ∈ ℤ
18 eqid 2610 . . . . . . . . 9 (coeff‘𝑓) = (coeff‘𝑓)
1918coef2 23791 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝑓):ℕ0⟶ℤ)
2016, 17, 19sylancl 693 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (coeff‘𝑓):ℕ0⟶ℤ)
21 fznn0sub 12244 . . . . . . . 8 (𝑘 ∈ (0...(deg‘𝑓)) → ((deg‘𝑓) − 𝑘) ∈ ℕ0)
2221adantl 481 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((deg‘𝑓) − 𝑘) ∈ ℕ0)
2320, 22ffvelrnd 6268 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) ∈ ℤ)
249, 15, 23elplyd 23762 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ))
25 0cn 9911 . . . . . 6 0 ∈ ℂ
26 eqid 2610 . . . . . . . . . 10 (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))) = (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))
2726coefv0 23808 . . . . . . . . 9 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0))
2824, 27syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0))
2923zcnd 11359 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) ∈ ℂ)
30 eqidd 2611 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))
3124, 15, 29, 30coeeq2 23802 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0)))
3231fveq1d 6105 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0))
33 0nn0 11184 . . . . . . . . . 10 0 ∈ ℕ0
34 breq1 4586 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑘 ≤ (deg‘𝑓) ↔ 0 ≤ (deg‘𝑓)))
35 oveq2 6557 . . . . . . . . . . . . 13 (𝑘 = 0 → ((deg‘𝑓) − 𝑘) = ((deg‘𝑓) − 0))
3635fveq2d 6107 . . . . . . . . . . . 12 (𝑘 = 0 → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) = ((coeff‘𝑓)‘((deg‘𝑓) − 0)))
3734, 36ifbieq1d 4059 . . . . . . . . . . 11 (𝑘 = 0 → if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0))
38 eqid 2610 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))
39 fvex 6113 . . . . . . . . . . . 12 ((coeff‘𝑓)‘((deg‘𝑓) − 0)) ∈ V
40 c0ex 9913 . . . . . . . . . . . 12 0 ∈ V
4139, 40ifex 4106 . . . . . . . . . . 11 if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) ∈ V
4237, 38, 41fvmpt 6191 . . . . . . . . . 10 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0))
4333, 42ax-mp 5 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0)
4415nn0ge0d 11231 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 0 ≤ (deg‘𝑓))
4544iftrued 4044 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) = ((coeff‘𝑓)‘((deg‘𝑓) − 0)))
4615nn0cnd 11230 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℂ)
4746subid1d 10260 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((deg‘𝑓) − 0) = (deg‘𝑓))
4847fveq2d 6107 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘𝑓)‘((deg‘𝑓) − 0)) = ((coeff‘𝑓)‘(deg‘𝑓)))
4945, 48eqtrd 2644 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5043, 49syl5eq 2656 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5128, 32, 503eqtrd 2648 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5212simprd 478 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ≠ 0𝑝)
53 eqid 2610 . . . . . . . . . . 11 (deg‘𝑓) = (deg‘𝑓)
5453, 18dgreq0 23825 . . . . . . . . . 10 (𝑓 ∈ (Poly‘ℤ) → (𝑓 = 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0))
5513, 54syl 17 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 = 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0))
5655necon3bid 2826 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 ≠ 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0))
5752, 56mpbid 221 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)
5851, 57eqnetrd 2849 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) ≠ 0)
59 ne0p 23767 . . . . . 6 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝)
6025, 58, 59sylancr 694 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝)
61 eldifsn 4260 . . . . 5 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝))
6224, 60, 61sylanbrc 695 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}))
63 oveq1 6556 . . . . . . . . 9 (𝑧 = (1 / 𝐴) → (𝑧𝑘) = ((1 / 𝐴)↑𝑘))
6463oveq2d 6565 . . . . . . . 8 (𝑧 = (1 / 𝐴) → (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
6564sumeq2sdv 14282 . . . . . . 7 (𝑧 = (1 / 𝐴) → Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
66 eqid 2610 . . . . . . 7 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))
67 sumex 14266 . . . . . . 7 Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)) ∈ V
6865, 66, 67fvmpt 6191 . . . . . 6 ((1 / 𝐴) ∈ ℂ → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
697, 68syl 17 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
7018coef3 23792 . . . . . . . . . . 11 (𝑓 ∈ (Poly‘ℤ) → (coeff‘𝑓):ℕ0⟶ℂ)
7113, 70syl 17 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (coeff‘𝑓):ℕ0⟶ℂ)
72 elfznn0 12302 . . . . . . . . . 10 (𝑛 ∈ (0...(deg‘𝑓)) → 𝑛 ∈ ℕ0)
73 ffvelrn 6265 . . . . . . . . . 10 (((coeff‘𝑓):ℕ0⟶ℂ ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝑓)‘𝑛) ∈ ℂ)
7471, 72, 73syl2an 493 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘𝑛) ∈ ℂ)
754ad2antrr 758 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ ℂ)
76 expcl 12740 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
7775, 72, 76syl2an 493 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴𝑛) ∈ ℂ)
7874, 77mulcld 9939 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) ∈ ℂ)
7975, 15expcld 12870 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
8079adantr 480 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
81 simplr 788 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝐴 ≠ 0)
8215nn0zd 11356 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℤ)
8375, 81, 82expne0d 12876 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝐴↑(deg‘𝑓)) ≠ 0)
8483adantr 480 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ≠ 0)
8578, 80, 84divcld 10680 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) ∈ ℂ)
86 fveq2 6103 . . . . . . . . 9 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → ((coeff‘𝑓)‘𝑛) = ((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)))
87 oveq2 6557 . . . . . . . . 9 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → (𝐴𝑛) = (𝐴↑((0 + (deg‘𝑓)) − 𝑘)))
8886, 87oveq12d 6567 . . . . . . . 8 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → (((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) = (((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))))
8988oveq1d 6564 . . . . . . 7 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → ((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))))
9085, 89fsumrev2 14356 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))))
9146adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (deg‘𝑓) ∈ ℂ)
9291addid2d 10116 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (0 + (deg‘𝑓)) = (deg‘𝑓))
9392oveq1d 6564 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((0 + (deg‘𝑓)) − 𝑘) = ((deg‘𝑓) − 𝑘))
9493fveq2d 6107 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) = ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)))
9593oveq2d 6565 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((0 + (deg‘𝑓)) − 𝑘)) = (𝐴↑((deg‘𝑓) − 𝑘)))
9675adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝐴 ∈ ℂ)
9781adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝐴 ≠ 0)
98 elfznn0 12302 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(deg‘𝑓)) → 𝑘 ∈ ℕ0)
9998adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑘 ∈ ℕ0)
10099nn0zd 11356 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑘 ∈ ℤ)
10182adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (deg‘𝑓) ∈ ℤ)
10296, 97, 100, 101expsubd 12881 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((deg‘𝑓) − 𝑘)) = ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)))
10395, 102eqtrd 2644 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((0 + (deg‘𝑓)) − 𝑘)) = ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)))
10494, 103oveq12d 6567 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))))
105104oveq1d 6564 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = ((((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))) / (𝐴↑(deg‘𝑓))))
10679adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
107 expcl 12740 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
10875, 98, 107syl2an 493 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴𝑘) ∈ ℂ)
10996, 97, 100expne0d 12876 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴𝑘) ≠ 0)
110106, 108, 109divcld 10680 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) ∈ ℂ)
11183adantr 480 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ≠ 0)
11229, 110, 106, 111divassd 10715 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))) / (𝐴↑(deg‘𝑓))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓)))))
113106, 111dividd 10678 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) = 1)
114113oveq1d 6564 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) / (𝐴𝑘)) = (1 / (𝐴𝑘)))
115106, 108, 106, 109, 111divdiv32d 10705 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓))) = (((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) / (𝐴𝑘)))
11696, 97, 100exprecd 12878 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((1 / 𝐴)↑𝑘) = (1 / (𝐴𝑘)))
117114, 115, 1163eqtr4d 2654 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓))) = ((1 / 𝐴)↑𝑘))
118117oveq2d 6565 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓)))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
119105, 112, 1183eqtrd 2648 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
120119sumeq2dv 14281 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑘 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
12190, 120eqtrd 2644 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
12218, 53coeid2 23799 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ ℂ) → (𝑓𝐴) = Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)))
12313, 75, 122syl2anc 691 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)))
124 simprr 792 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = 0)
125123, 124eqtr3d 2646 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) = 0)
126125oveq1d 6564 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = (0 / (𝐴↑(deg‘𝑓))))
127 fzfid 12634 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (0...(deg‘𝑓)) ∈ Fin)
128127, 79, 78, 83fsumdivc 14360 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))))
12979, 83div0d 10679 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (0 / (𝐴↑(deg‘𝑓))) = 0)
130126, 128, 1293eqtr3d 2652 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = 0)
13169, 121, 1303eqtr2d 2650 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0)
132 fveq1 6102 . . . . . 6 (𝑔 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) → (𝑔‘(1 / 𝐴)) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)))
133132eqeq1d 2612 . . . . 5 (𝑔 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) → ((𝑔‘(1 / 𝐴)) = 0 ↔ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0))
134133rspcev 3282 . . . 4 (((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0)
13562, 131, 134syl2anc 691 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0)
136 elaa 23875 . . 3 ((1 / 𝐴) ∈ 𝔸 ↔ ((1 / 𝐴) ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0))
1377, 135, 136sylanbrc 695 . 2 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (1 / 𝐴) ∈ 𝔸)
1383, 137rexlimddv 3017 1 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145   / cdiv 10563  0cn0 11169  cz 11254  ...cfz 12197  cexp 12722  Σcsu 14264  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747  𝔸caa 23873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751  df-aa 23874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator