Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq2 Structured version   Visualization version   GIF version

Theorem coeeq2 23802
 Description: Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
coeeq2 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 simpll 786 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝜑)
4 simpr 476 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘𝑁)
5 simplr 788 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ ℕ0)
6 nn0uz 11598 . . . . . . . 8 0 = (ℤ‘0)
75, 6syl6eleq 2698 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (ℤ‘0))
82nn0zd 11356 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
98ad2antrr 758 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑁 ∈ ℤ)
10 elfz5 12205 . . . . . . 7 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
117, 9, 10syl2anc 691 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
124, 11mpbird 246 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (0...𝑁))
13 dgrle.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
143, 12, 13syl2anc 691 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝐴 ∈ ℂ)
15 0cnd 9912 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘𝑁) → 0 ∈ ℂ)
1614, 15ifclda 4070 . . 3 ((𝜑𝑘 ∈ ℕ0) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
17 eqid 2610 . . 3 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
1816, 17fmptd 6292 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ)
19 simpr 476 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
2017fvmpt2 6200 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ if(𝑘𝑁, 𝐴, 0) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2119, 16, 20syl2anc 691 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2221neeq1d 2841 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘𝑁, 𝐴, 0) ≠ 0))
23 iffalse 4045 . . . . . . 7 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
2423necon1ai 2809 . . . . . 6 (if(𝑘𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁)
2522, 24syl6bi 242 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2625ralrimiva 2949 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
27 nfv 1830 . . . . 5 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)
28 nffvmpt1 6111 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
29 nfcv 2751 . . . . . . 7 𝑘0
3028, 29nfne 2882 . . . . . 6 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0
31 nfv 1830 . . . . . 6 𝑘 𝑚𝑁
3230, 31nfim 1813 . . . . 5 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)
33 fveq2 6103 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
3433neeq1d 2841 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0))
35 breq1 4586 . . . . . 6 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
3634, 35imbi12d 333 . . . . 5 (𝑘 = 𝑚 → ((((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
3727, 32, 36cbvral 3143 . . . 4 (∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
3826, 37sylib 207 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
39 plyco0 23752 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
402, 18, 39syl2anc 691 . . 3 (𝜑 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
4138, 40mpbird 246 . 2 (𝜑 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
42 dgrle.4 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
43 nfcv 2751 . . . . . 6 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))
44 nfcv 2751 . . . . . . 7 𝑘 ·
45 nfcv 2751 . . . . . . 7 𝑘(𝑧𝑚)
4628, 44, 45nfov 6575 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
47 oveq2 6557 . . . . . . 7 (𝑘 = 𝑚 → (𝑧𝑘) = (𝑧𝑚))
4833, 47oveq12d 6567 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)))
4943, 46, 48cbvsumi 14275 . . . . 5 Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
50 elfznn0 12302 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
5150adantl 481 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
52 elfzle2 12216 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
5352adantl 481 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘𝑁)
5453iftrued 4044 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) = 𝐴)
5513adantlr 747 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
5654, 55eqeltrd 2688 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
5751, 56, 20syl2anc 691 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
5857, 54eqtrd 2644 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 𝐴)
5958oveq1d 6564 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
6059sumeq2dv 14281 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6149, 60syl5eqr 2658 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6261mpteq2dva 4672 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
6342, 62eqtr4d 2647 . 2 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))))
641, 2, 18, 41, 63coeeq 23787 1 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   “ cima 5041  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   ≤ cle 9954  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ↑cexp 12722  Σcsu 14264  Polycply 23744  coeffccoe 23746 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750 This theorem is referenced by:  dgrle  23803  aareccl  23885  elaa2lem  39126
 Copyright terms: Public domain W3C validator