MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq2 Structured version   Unicode version

Theorem coeeq2 21685
Description: Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
dgrle.2  |-  ( ph  ->  N  e.  NN0 )
dgrle.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
dgrle.4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
coeeq2  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
Distinct variable groups:    z, A    z, k, N    ph, k, z
Allowed substitution hints:    A( k)    S( z, k)    F( z, k)

Proof of Theorem coeeq2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 dgrle.2 . 2  |-  ( ph  ->  N  e.  NN0 )
3 simpll 753 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  ph )
4 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  <_  N )
5 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  NN0 )
6 nn0uz 10887 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
75, 6syl6eleq 2528 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  ( ZZ>= `  0 )
)
82nn0zd 10737 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
98ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  N  e.  ZZ )
10 elfz5 11437 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
k  e.  ( 0 ... N )  <->  k  <_  N ) )
117, 9, 10syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  (
k  e.  ( 0 ... N )  <->  k  <_  N ) )
124, 11mpbird 232 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  ( 0 ... N
) )
13 dgrle.3 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
143, 12, 13syl2anc 661 . . . 4  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  A  e.  CC )
15 0cnd 9371 . . . 4  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  N )  -> 
0  e.  CC )
1614, 15ifclda 3816 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  <_  N ,  A ,  0 )  e.  CC )
17 eqid 2438 . . 3  |-  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )  =  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )
1816, 17fmptd 5862 . 2  |-  ( ph  ->  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) : NN0 --> CC )
19 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
2017fvmpt2 5776 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  if ( k  <_  N ,  A ,  0 )  e.  CC )  -> 
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  =  if ( k  <_  N ,  A , 
0 ) )
2119, 16, 20syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  if ( k  <_  N ,  A ,  0 ) )
2221neeq1d 2616 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  <->  if (
k  <_  N ,  A ,  0 )  =/=  0 ) )
23 iffalse 3794 . . . . . . 7  |-  ( -.  k  <_  N  ->  if ( k  <_  N ,  A ,  0 )  =  0 )
2423necon1ai 2648 . . . . . 6  |-  ( if ( k  <_  N ,  A ,  0 )  =/=  0  ->  k  <_  N )
2522, 24syl6bi 228 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
2625ralrimiva 2794 . . . 4  |-  ( ph  ->  A. k  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
27 nfv 1673 . . . . 5  |-  F/ m
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )
28 nffvmpt1 5694 . . . . . . 7  |-  F/_ k
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )
29 nfcv 2574 . . . . . . 7  |-  F/_ k
0
3028, 29nfne 2698 . . . . . 6  |-  F/ k ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  =/=  0
31 nfv 1673 . . . . . 6  |-  F/ k  m  <_  N
3230, 31nfim 1852 . . . . 5  |-  F/ k ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N )
33 fveq2 5686 . . . . . . 7  |-  ( k  =  m  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m ) )
3433neeq1d 2616 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  =/=  0  <->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0 ) )
35 breq1 4290 . . . . . 6  |-  ( k  =  m  ->  (
k  <_  N  <->  m  <_  N ) )
3634, 35imbi12d 320 . . . . 5  |-  ( k  =  m  ->  (
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )  <->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
3727, 32, 36cbvral 2938 . . . 4  |-  ( A. k  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) )
3826, 37sylib 196 . . 3  |-  ( ph  ->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) )
39 plyco0 21635 . . . 4  |-  ( ( N  e.  NN0  /\  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) : NN0 --> CC )  ->  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
402, 18, 39syl2anc 661 . . 3  |-  ( ph  ->  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
4138, 40mpbird 232 . 2  |-  ( ph  ->  ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) )
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )
42 dgrle.4 . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
43 nfcv 2574 . . . . . 6  |-  F/_ m
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
44 nfcv 2574 . . . . . . 7  |-  F/_ k  x.
45 nfcv 2574 . . . . . . 7  |-  F/_ k
( z ^ m
)
4628, 44, 45nfov 6109 . . . . . 6  |-  F/_ k
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) )
47 oveq2 6094 . . . . . . 7  |-  ( k  =  m  ->  (
z ^ k )  =  ( z ^
m ) )
4833, 47oveq12d 6104 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) ) )
4943, 46, 48cbvsumi 13166 . . . . 5  |-  sum_ k  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ m  e.  (
0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) )
50 elfznn0 11473 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
5150adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
52 elfzle2 11447 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... N )  ->  k  <_  N )
5352adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  <_  N )
54 iftrue 3792 . . . . . . . . . . 11  |-  ( k  <_  N  ->  if ( k  <_  N ,  A ,  0 )  =  A )
5553, 54syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  if ( k  <_  N ,  A ,  0 )  =  A )
5613adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
5755, 56eqeltrd 2512 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  if ( k  <_  N ,  A ,  0 )  e.  CC )
5851, 57, 20syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  if ( k  <_  N ,  A ,  0 ) )
5958, 55eqtrd 2470 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  A )
6059oveq1d 6101 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ k ) ) )
6160sumeq2dv 13172 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
6249, 61syl5eqr 2484 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ m  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
6362mpteq2dva 4373 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_
m  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) ) )
6442, 63eqtr4d 2473 . 2  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ m  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) ) ) )
651, 2, 18, 41, 64coeeq 21670 1  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   ifcif 3786   {csn 3872   class class class wbr 4287    e. cmpt 4345   "cima 4838   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    <_ cle 9411   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   ...cfz 11429   ^cexp 11857   sum_csu 13155  Polycply 21627  coeffccoe 21629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-rlim 12959  df-sum 13156  df-0p 21123  df-ply 21631  df-coe 21633
This theorem is referenced by:  dgrle  21686  aareccl  21767
  Copyright terms: Public domain W3C validator