MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq2 Structured version   Unicode version

Theorem coeeq2 21844
Description: Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
dgrle.2  |-  ( ph  ->  N  e.  NN0 )
dgrle.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
dgrle.4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
coeeq2  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
Distinct variable groups:    z, A    z, k, N    ph, k, z
Allowed substitution hints:    A( k)    S( z, k)    F( z, k)

Proof of Theorem coeeq2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 dgrle.2 . 2  |-  ( ph  ->  N  e.  NN0 )
3 simpll 753 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  ph )
4 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  <_  N )
5 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  NN0 )
6 nn0uz 11007 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
75, 6syl6eleq 2552 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  ( ZZ>= `  0 )
)
82nn0zd 10857 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
98ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  N  e.  ZZ )
10 elfz5 11563 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
k  e.  ( 0 ... N )  <->  k  <_  N ) )
117, 9, 10syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  (
k  e.  ( 0 ... N )  <->  k  <_  N ) )
124, 11mpbird 232 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  ( 0 ... N
) )
13 dgrle.3 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
143, 12, 13syl2anc 661 . . . 4  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  A  e.  CC )
15 0cnd 9491 . . . 4  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  N )  -> 
0  e.  CC )
1614, 15ifclda 3930 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  <_  N ,  A ,  0 )  e.  CC )
17 eqid 2454 . . 3  |-  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )  =  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )
1816, 17fmptd 5977 . 2  |-  ( ph  ->  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) : NN0 --> CC )
19 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
2017fvmpt2 5891 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  if ( k  <_  N ,  A ,  0 )  e.  CC )  -> 
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  =  if ( k  <_  N ,  A , 
0 ) )
2119, 16, 20syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  if ( k  <_  N ,  A ,  0 ) )
2221neeq1d 2729 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  <->  if (
k  <_  N ,  A ,  0 )  =/=  0 ) )
23 iffalse 3908 . . . . . . 7  |-  ( -.  k  <_  N  ->  if ( k  <_  N ,  A ,  0 )  =  0 )
2423necon1ai 2683 . . . . . 6  |-  ( if ( k  <_  N ,  A ,  0 )  =/=  0  ->  k  <_  N )
2522, 24syl6bi 228 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
2625ralrimiva 2830 . . . 4  |-  ( ph  ->  A. k  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
27 nfv 1674 . . . . 5  |-  F/ m
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )
28 nffvmpt1 5808 . . . . . . 7  |-  F/_ k
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )
29 nfcv 2616 . . . . . . 7  |-  F/_ k
0
3028, 29nfne 2783 . . . . . 6  |-  F/ k ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  =/=  0
31 nfv 1674 . . . . . 6  |-  F/ k  m  <_  N
3230, 31nfim 1858 . . . . 5  |-  F/ k ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N )
33 fveq2 5800 . . . . . . 7  |-  ( k  =  m  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m ) )
3433neeq1d 2729 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  =/=  0  <->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0 ) )
35 breq1 4404 . . . . . 6  |-  ( k  =  m  ->  (
k  <_  N  <->  m  <_  N ) )
3634, 35imbi12d 320 . . . . 5  |-  ( k  =  m  ->  (
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )  <->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
3727, 32, 36cbvral 3049 . . . 4  |-  ( A. k  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) )
3826, 37sylib 196 . . 3  |-  ( ph  ->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) )
39 plyco0 21794 . . . 4  |-  ( ( N  e.  NN0  /\  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) : NN0 --> CC )  ->  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
402, 18, 39syl2anc 661 . . 3  |-  ( ph  ->  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
4138, 40mpbird 232 . 2  |-  ( ph  ->  ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) )
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )
42 dgrle.4 . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
43 nfcv 2616 . . . . . 6  |-  F/_ m
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
44 nfcv 2616 . . . . . . 7  |-  F/_ k  x.
45 nfcv 2616 . . . . . . 7  |-  F/_ k
( z ^ m
)
4628, 44, 45nfov 6224 . . . . . 6  |-  F/_ k
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) )
47 oveq2 6209 . . . . . . 7  |-  ( k  =  m  ->  (
z ^ k )  =  ( z ^
m ) )
4833, 47oveq12d 6219 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) ) )
4943, 46, 48cbvsumi 13293 . . . . 5  |-  sum_ k  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ m  e.  (
0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) )
50 elfznn0 11599 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
5150adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
52 elfzle2 11573 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... N )  ->  k  <_  N )
5352adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  <_  N )
54 iftrue 3906 . . . . . . . . . . 11  |-  ( k  <_  N  ->  if ( k  <_  N ,  A ,  0 )  =  A )
5553, 54syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  if ( k  <_  N ,  A ,  0 )  =  A )
5613adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
5755, 56eqeltrd 2542 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  if ( k  <_  N ,  A ,  0 )  e.  CC )
5851, 57, 20syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  if ( k  <_  N ,  A ,  0 ) )
5958, 55eqtrd 2495 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  A )
6059oveq1d 6216 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ k ) ) )
6160sumeq2dv 13299 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
6249, 61syl5eqr 2509 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ m  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
6362mpteq2dva 4487 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_
m  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) ) )
6442, 63eqtr4d 2498 . 2  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ m  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) ) ) )
651, 2, 18, 41, 64coeeq 21829 1  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   ifcif 3900   {csn 3986   class class class wbr 4401    |-> cmpt 4459   "cima 4952   -->wf 5523   ` cfv 5527  (class class class)co 6201   CCcc 9392   0cc0 9394   1c1 9395    + caddc 9397    x. cmul 9399    <_ cle 9531   NN0cn0 10691   ZZcz 10758   ZZ>=cuz 10973   ...cfz 11555   ^cexp 11983   sum_csu 13282  Polycply 21786  coeffccoe 21788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472  ax-addf 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-isom 5536  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-of 6431  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-map 7327  df-pm 7328  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-sup 7803  df-oi 7836  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-n0 10692  df-z 10759  df-uz 10974  df-rp 11104  df-fz 11556  df-fzo 11667  df-fl 11760  df-seq 11925  df-exp 11984  df-hash 12222  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-clim 13085  df-rlim 13086  df-sum 13283  df-0p 21282  df-ply 21790  df-coe 21792
This theorem is referenced by:  dgrle  21845  aareccl  21926
  Copyright terms: Public domain W3C validator