Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignnld Structured version   Visualization version   GIF version

Theorem dignnld 42195
Description: The leading digits of a positive integer are 0. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
dignnld ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignnld
StepHypRef Expression
1 eluz2nn 11602 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
213ad2ant1 1075 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℕ)
3 nnrp 11718 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
43anim2i 591 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+))
5 relogbzcl 24312 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (𝐵 logb 𝑁) ∈ ℝ)
64, 5syl 17 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) ∈ ℝ)
7 nnre 10904 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
8 nnge1 10923 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
97, 8jca 553 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁))
10 1re 9918 . . . . . . . . . 10 1 ∈ ℝ
11 elicopnf 12140 . . . . . . . . . 10 (1 ∈ ℝ → (𝑁 ∈ (1[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (1[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁))
139, 12sylibr 223 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (1[,)+∞))
1413anim2i 591 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ (1[,)+∞)))
15 rege1logbzge0 42151 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑁))
1614, 15syl 17 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵 logb 𝑁))
176, 16jca 553 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐵 logb 𝑁) ∈ ℝ ∧ 0 ≤ (𝐵 logb 𝑁)))
18 flge0nn0 12483 . . . . 5 (((𝐵 logb 𝑁) ∈ ℝ ∧ 0 ≤ (𝐵 logb 𝑁)) → (⌊‘(𝐵 logb 𝑁)) ∈ ℕ0)
19 peano2nn0 11210 . . . . 5 ((⌊‘(𝐵 logb 𝑁)) ∈ ℕ0 → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0)
2017, 18, 193syl 18 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0)
21 eluznn0 11633 . . . 4 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℕ0)
2220, 21stoic3 1692 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℕ0)
23 nnnn0 11176 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
24 nn0rp0 12150 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
2523, 24syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0[,)+∞))
26253ad2ant2 1076 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ (0[,)+∞))
27 nn0digval 42192 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵))
282, 22, 26, 27syl3anc 1318 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵))
2973ad2ant2 1076 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ ℝ)
30 eluzelre 11574 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
31303ad2ant1 1075 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ)
32 eluz2n0 11604 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
33323ad2ant1 1075 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ≠ 0)
34 eluzelz 11573 . . . . . . . 8 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℤ)
35343ad2ant3 1077 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℤ)
3631, 33, 35reexpclzd 12896 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ)
37 eluzelcn 11575 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
38373ad2ant1 1075 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℂ)
3938, 33, 35expne0d 12876 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ≠ 0)
4029, 36, 39redivcld 10732 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) ∈ ℝ)
41 nn0ge0 11195 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
4223, 41syl 17 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
43423ad2ant2 1076 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ 𝑁)
441nngt0d 10941 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
45443ad2ant1 1075 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 < 𝐵)
46 expgt0 12755 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝐾))
4731, 35, 45, 46syl3anc 1318 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 < (𝐵𝐾))
48 ge0div 10769 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ ∧ 0 < (𝐵𝐾)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝐵𝐾))))
4929, 36, 47, 48syl3anc 1318 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝐵𝐾))))
5043, 49mpbid 221 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ (𝑁 / (𝐵𝐾)))
51 dignn0ldlem 42194 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))
521nnrpd 11746 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
53 rpexpcl 12741 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝐾 ∈ ℤ) → (𝐵𝐾) ∈ ℝ+)
5452, 34, 53syl2an 493 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ+)
55543adant2 1073 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ+)
56 divlt1lt 11775 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → ((𝑁 / (𝐵𝐾)) < 1 ↔ 𝑁 < (𝐵𝐾)))
5729, 55, 56syl2anc 691 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝑁 / (𝐵𝐾)) < 1 ↔ 𝑁 < (𝐵𝐾)))
5851, 57mpbird 246 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) < 1)
59 0re 9919 . . . . . . 7 0 ∈ ℝ
6010rexri 9976 . . . . . . 7 1 ∈ ℝ*
6159, 60pm3.2i 470 . . . . . 6 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
62 elico2 12108 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) ↔ ((𝑁 / (𝐵𝐾)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝐵𝐾)) ∧ (𝑁 / (𝐵𝐾)) < 1)))
6361, 62mp1i 13 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) ↔ ((𝑁 / (𝐵𝐾)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝐵𝐾)) ∧ (𝑁 / (𝐵𝐾)) < 1)))
6440, 50, 58, 63mpbir3and 1238 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) ∈ (0[,)1))
65 ico01fl0 12482 . . . 4 ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) → (⌊‘(𝑁 / (𝐵𝐾))) = 0)
6664, 65syl 17 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (⌊‘(𝑁 / (𝐵𝐾))) = 0)
6766oveq1d 6564 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵) = (0 mod 𝐵))
68523ad2ant1 1075 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ+)
69 0mod 12563 . . 3 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
7068, 69syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (0 mod 𝐵) = 0)
7128, 67, 703eqtrd 2648 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  [,)cico 12048  cfl 12453   mod cmo 12530  cexp 12722   logb clogb 24302  digitcdig 42187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-logb 24303  df-dig 42188
This theorem is referenced by:  dig2nn0ld  42196
  Copyright terms: Public domain W3C validator