MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcexp Structured version   Visualization version   GIF version

Theorem pcexp 15402
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))

Proof of Theorem pcexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
21oveq2d 6565 . . . 4 (𝑥 = 0 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑0)))
3 oveq1 6556 . . . 4 (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴)))
42, 3eqeq12d 2625 . . 3 (𝑥 = 0 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))))
5 oveq2 6557 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
65oveq2d 6565 . . . 4 (𝑥 = 𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑦)))
7 oveq1 6556 . . . 4 (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴)))
86, 7eqeq12d 2625 . . 3 (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴))))
9 oveq2 6557 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
109oveq2d 6565 . . . 4 (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1))))
11 oveq1 6556 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))
1210, 11eqeq12d 2625 . . 3 (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
13 oveq2 6557 . . . . 5 (𝑥 = -𝑦 → (𝐴𝑥) = (𝐴↑-𝑦))
1413oveq2d 6565 . . . 4 (𝑥 = -𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑-𝑦)))
15 oveq1 6556 . . . 4 (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴)))
1614, 15eqeq12d 2625 . . 3 (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
17 oveq2 6557 . . . . 5 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
1817oveq2d 6565 . . . 4 (𝑥 = 𝑁 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑁)))
19 oveq1 6556 . . . 4 (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴)))
2018, 19eqeq12d 2625 . . 3 (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
21 pc1 15398 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2221adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0)
23 qcn 11678 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2423ad2antrl 760 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈ ℂ)
2524exp0d 12864 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1)
2625oveq2d 6565 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1))
27 pcqcl 15399 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ)
2827zcnd 11359 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ)
2928mul02d 10113 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 · (𝑃 pCnt 𝐴)) = 0)
3022, 26, 293eqtr4d 2654 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))
31 oveq1 6556 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
32 expp1 12729 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3324, 32sylan 487 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3433oveq2d 6565 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴𝑦) · 𝐴)))
35 simpll 786 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑃 ∈ ℙ)
36 simplrl 796 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℚ)
37 simplrr 797 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ≠ 0)
38 nn0z 11277 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
3938adantl 481 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
40 qexpclz 12743 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴𝑦) ∈ ℚ)
4136, 37, 39, 40syl3anc 1318 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ∈ ℚ)
4224adantr 480 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℂ)
4342, 37, 39expne0d 12876 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ≠ 0)
44 pcqmul 15396 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
4535, 41, 43, 36, 37, 44syl122anc 1327 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
4634, 45eqtrd 2644 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
47 nn0cn 11179 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
4847adantl 481 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
49 1cnd 9935 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 1 ∈ ℂ)
5028adantr 480 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt 𝐴) ∈ ℂ)
5148, 49, 50adddird 9944 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (1 · (𝑃 pCnt 𝐴))))
5250mulid2d 9937 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (1 · (𝑃 pCnt 𝐴)) = (𝑃 pCnt 𝐴))
5352oveq2d 6565 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑦 · (𝑃 pCnt 𝐴)) + (1 · (𝑃 pCnt 𝐴))) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
5451, 53eqtrd 2644 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
5546, 54eqeq12d 2625 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))))
5631, 55syl5ibr 235 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
5756ex 449 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0 → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))))
58 negeq 10152 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))
59 nnnn0 11176 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
60 expneg 12730 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
6124, 59, 60syl2an 493 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
6261oveq2d 6565 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴𝑦))))
63 simpll 786 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℙ)
6459, 41sylan2 490 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ∈ ℚ)
6559, 43sylan2 490 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ≠ 0)
66 pcrec 15401 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
6763, 64, 65, 66syl12anc 1316 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
6862, 67eqtrd 2644 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴𝑦)))
69 nncn 10905 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
70 mulneg1 10345 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
7169, 28, 70syl2anr 494 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
7268, 71eqeq12d 2625 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))))
7358, 72syl5ibr 235 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
7473ex 449 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))))
754, 8, 12, 16, 20, 30, 57, 74zindd 11354 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
76753impia 1253 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  -cneg 10146   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cq 11664  cexp 12722  cprime 15223   pCnt cpc 15379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380
This theorem is referenced by:  qexpz  15443  expnprm  15444  dchrisum0flblem1  24997  dchrisum0flblem2  24998
  Copyright terms: Public domain W3C validator