MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcexp Structured version   Unicode version

Theorem pcexp 14594
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )

Proof of Theorem pcexp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6288 . . . . 5  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
21oveq2d 6296 . . . 4  |-  ( x  =  0  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ 0 ) ) )
3 oveq1 6287 . . . 4  |-  ( x  =  0  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( 0  x.  ( P  pCnt  A ) ) )
42, 3eqeq12d 2426 . . 3  |-  ( x  =  0  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P 
pCnt  A ) ) ) )
5 oveq2 6288 . . . . 5  |-  ( x  =  y  ->  ( A ^ x )  =  ( A ^ y
) )
65oveq2d 6296 . . . 4  |-  ( x  =  y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ y ) ) )
7 oveq1 6287 . . . 4  |-  ( x  =  y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( y  x.  ( P  pCnt  A ) ) )
86, 7eqeq12d 2426 . . 3  |-  ( x  =  y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ y
) )  =  ( y  x.  ( P 
pCnt  A ) ) ) )
9 oveq2 6288 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A ^ x )  =  ( A ^ (
y  +  1 ) ) )
109oveq2d 6296 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ ( y  +  1 ) ) ) )
11 oveq1 6287 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) )
1210, 11eqeq12d 2426 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ (
y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P 
pCnt  A ) ) ) )
13 oveq2 6288 . . . . 5  |-  ( x  =  -u y  ->  ( A ^ x )  =  ( A ^ -u y
) )
1413oveq2d 6296 . . . 4  |-  ( x  =  -u y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ -u y ) ) )
15 oveq1 6287 . . . 4  |-  ( x  =  -u y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( -u y  x.  ( P  pCnt  A
) ) )
1614, 15eqeq12d 2426 . . 3  |-  ( x  =  -u y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ -u y
) )  =  (
-u y  x.  ( P  pCnt  A ) ) ) )
17 oveq2 6288 . . . . 5  |-  ( x  =  N  ->  ( A ^ x )  =  ( A ^ N
) )
1817oveq2d 6296 . . . 4  |-  ( x  =  N  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ N ) ) )
19 oveq1 6287 . . . 4  |-  ( x  =  N  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( N  x.  ( P  pCnt  A ) ) )
2018, 19eqeq12d 2426 . . 3  |-  ( x  =  N  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ N
) )  =  ( N  x.  ( P 
pCnt  A ) ) ) )
21 pc1 14590 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2221adantr 465 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  1
)  =  0 )
23 qcn 11243 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
2423ad2antrl 728 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  A  e.  CC )
2524exp0d 12350 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( A ^ 0 )  =  1 )
2625oveq2d 6296 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( P  pCnt  1 ) )
27 pcqcl 14591 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  ZZ )
2827zcnd 11011 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  CC )
2928mul02d 9814 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( 0  x.  ( P  pCnt  A ) )  =  0 )
3022, 26, 293eqtr4d 2455 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P  pCnt  A
) ) )
31 oveq1 6287 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  (
( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) )
32 expp1 12219 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ (
y  +  1 ) )  =  ( ( A ^ y )  x.  A ) )
3324, 32sylan 471 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ ( y  +  1 ) )  =  ( ( A ^
y )  x.  A
) )
3433oveq2d 6296 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( P  pCnt  (
( A ^ y
)  x.  A ) ) )
35 simpll 754 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  P  e.  Prime )
36 simplrl 764 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  QQ )
37 simplrr 765 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  =/=  0 )
38 nn0z 10930 . . . . . . . . . 10  |-  ( y  e.  NN0  ->  y  e.  ZZ )
3938adantl 466 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  ZZ )
40 qexpclz 12233 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  A  =/=  0  /\  y  e.  ZZ )  ->  ( A ^ y )  e.  QQ )
4136, 37, 39, 40syl3anc 1232 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  e.  QQ )
4224adantr 465 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  CC )
4342, 37, 39expne0d 12362 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  =/=  0 )
44 pcqmul 14588 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 )  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  ( P  pCnt  ( ( A ^
y )  x.  A
) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) ) )
4535, 41, 43, 36, 37, 44syl122anc 1241 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( ( A ^ y )  x.  A ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
4634, 45eqtrd 2445 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
47 nn0cn 10848 . . . . . . . . 9  |-  ( y  e.  NN0  ->  y  e.  CC )
4847adantl 466 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  CC )
49 1cnd 9644 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  1  e.  CC )
5028adantr 465 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  A )  e.  CC )
5148, 49, 50adddird 9653 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( y  +  1 )  x.  ( P 
pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A
) )  +  ( 1  x.  ( P 
pCnt  A ) ) ) )
5250mulid2d 9646 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
1  x.  ( P 
pCnt  A ) )  =  ( P  pCnt  A
) )
5352oveq2d 6296 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( y  x.  ( P  pCnt  A ) )  +  ( 1  x.  ( P  pCnt  A
) ) )  =  ( ( y  x.  ( P  pCnt  A
) )  +  ( P  pCnt  A )
) )
5451, 53eqtrd 2445 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( y  +  1 )  x.  ( P 
pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A
) )  +  ( P  pCnt  A )
) )
5546, 54eqeq12d 2426 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ ( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A
) )  <->  ( ( P  pCnt  ( A ^
y ) )  +  ( P  pCnt  A
) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) ) )
5631, 55syl5ibr 223 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) )
5756ex 434 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN0  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) ) )
58 negeq 9850 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  -u ( P  pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
59 nnnn0 10845 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  NN0 )
60 expneg 12220 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ -u y
)  =  ( 1  /  ( A ^
y ) ) )
6124, 59, 60syl2an 477 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
6261oveq2d 6296 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( P  pCnt  (
1  /  ( A ^ y ) ) ) )
63 simpll 754 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  P  e.  Prime )
6459, 41sylan2 474 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  e.  QQ )
6559, 43sylan2 474 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  =/=  0 )
66 pcrec 14593 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 ) )  ->  ( P  pCnt  ( 1  /  ( A ^ y ) ) )  =  -u ( P  pCnt  ( A ^
y ) ) )
6763, 64, 65, 66syl12anc 1230 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( 1  / 
( A ^ y
) ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
6862, 67eqtrd 2445 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
69 nncn 10586 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
70 mulneg1 10036 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( P  pCnt  A )  e.  CC )  -> 
( -u y  x.  ( P  pCnt  A ) )  =  -u ( y  x.  ( P  pCnt  A
) ) )
7169, 28, 70syl2anr 478 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( -u y  x.  ( P 
pCnt  A ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
7268, 71eqeq12d 2426 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A ) )  <->  -u ( P 
pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) ) )
7358, 72syl5ibr 223 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) )
7473ex 434 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) ) )
754, 8, 12, 16, 20, 30, 57, 74zindd 11006 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( N  e.  ZZ  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) ) )
76753impia 1196 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600  (class class class)co 6280   CCcc 9522   0cc0 9524   1c1 9525    + caddc 9527    x. cmul 9529   -ucneg 9844    / cdiv 10249   NNcn 10578   NN0cn0 10838   ZZcz 10907   QQcq 11229   ^cexp 12212   Primecprime 14428    pCnt cpc 14571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-2o 7170  df-oadd 7173  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-sup 7937  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-3 10638  df-n0 10839  df-z 10908  df-uz 11130  df-q 11230  df-rp 11268  df-fl 11968  df-mod 12037  df-seq 12154  df-exp 12213  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-dvds 14198  df-gcd 14356  df-prm 14429  df-pc 14572
This theorem is referenced by:  qexpz  14631  expnprm  14632  dchrisum0flblem1  24076  dchrisum0flblem2  24077
  Copyright terms: Public domain W3C validator