Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem56 Structured version   Visualization version   GIF version

Theorem fourierdlem56 39055
Description: Derivative of the 𝐾 function on an interval non containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem56.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem56.a (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
fourierdlem56.r4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
Assertion
Ref Expression
fourierdlem56 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem56
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem56.a . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
21difss2d 3702 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
32sselda 3568 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4 1ex 9914 . . . . . . . 8 1 ∈ V
5 ovex 6577 . . . . . . . 8 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
64, 5ifex 4106 . . . . . . 7 if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V
76a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V)
8 fourierdlem56.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
98fvmpt2 6200 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
103, 7, 9syl2anc 691 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
11 fourierdlem56.r4 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
1211neneqd 2787 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
1312iffalsed 4047 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
14 elioore 12076 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1514adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1615recnd 9947 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
1716halfcld 11154 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
1817sincld 14699 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
19 2cnd 10970 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20 fourierdlem44 39044 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
213, 11, 20syl2anc 691 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
22 2ne0 10990 . . . . . . . 8 2 ≠ 0
2322a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2416, 18, 19, 21, 23divdiv1d 10711 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 / (sin‘(𝑠 / 2))) / 2) = (𝑠 / ((sin‘(𝑠 / 2)) · 2)))
2518, 19mulcomd 9940 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2)) · 2) = (2 · (sin‘(𝑠 / 2))))
2625oveq2d 6565 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / ((sin‘(𝑠 / 2)) · 2)) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
2724, 26eqtr2d 2645 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2810, 13, 273eqtrd 2648 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2928mpteq2dva 4672 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2)))
3029oveq2d 6565 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))))
31 reelprrecn 9907 . . . 4 ℝ ∈ {ℝ, ℂ}
3231a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3316, 18, 21divcld 10680 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (sin‘(𝑠 / 2))) ∈ ℂ)
34 1red 9934 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3515rehalfcld 11156 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3635resincld 14712 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3734, 36remulcld 9949 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 · (sin‘(𝑠 / 2))) ∈ ℝ)
3835recoscld 14713 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℝ)
3934rehalfcld 11156 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
4038, 39remulcld 9949 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℝ)
4140, 15remulcld 9949 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) ∈ ℝ)
4237, 41resubcld 10337 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) ∈ ℝ)
4336resqcld 12897 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ∈ ℝ)
44 2z 11286 . . . . . 6 2 ∈ ℤ
4544a1i 11 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
4618, 21, 45expne0d 12876 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ≠ 0)
4742, 43, 46redivcld 10732 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) ∈ ℝ)
48 1cnd 9935 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
49 recn 9905 . . . . . 6 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5049adantl 481 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
51 1red 9934 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
5232dvmptid 23526 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
53 ioossre 12106 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
55 eqid 2610 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5655tgioo2 22414 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
57 iooretop 22379 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
5857a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
5932, 50, 51, 52, 54, 56, 55, 58dvmptres 23532 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
60 elsni 4142 . . . . . . 7 ((sin‘(𝑠 / 2)) ∈ {0} → (sin‘(𝑠 / 2)) = 0)
6160necon3ai 2807 . . . . . 6 ((sin‘(𝑠 / 2)) ≠ 0 → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6221, 61syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6318, 62eldifd 3551 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
6417coscld 14700 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
6548halfcld 11154 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
6664, 65mulcld 9939 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℂ)
67 cnelprrecn 9908 . . . . . 6 ℂ ∈ {ℝ, ℂ}
6867a1i 11 . . . . 5 (𝜑 → ℂ ∈ {ℝ, ℂ})
69 sinf 14693 . . . . . . 7 sin:ℂ⟶ℂ
7069a1i 11 . . . . . 6 (𝜑 → sin:ℂ⟶ℂ)
7170ffvelrnda 6267 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
72 cosf 14694 . . . . . . 7 cos:ℂ⟶ℂ
7372a1i 11 . . . . . 6 (𝜑 → cos:ℂ⟶ℂ)
7473ffvelrnda 6267 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
75 2cnd 10970 . . . . . 6 (𝜑 → 2 ∈ ℂ)
7622a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
7732, 16, 34, 59, 75, 76dvmptdivc 23534 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)))
78 ffn 5958 . . . . . . . . . . 11 (sin:ℂ⟶ℂ → sin Fn ℂ)
7969, 78ax-mp 5 . . . . . . . . . 10 sin Fn ℂ
80 dffn5 6151 . . . . . . . . . 10 (sin Fn ℂ ↔ sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
8179, 80mpbi 219 . . . . . . . . 9 sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))
8281eqcomi 2619 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (sin‘𝑥)) = sin
8382oveq2i 6560 . . . . . . 7 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (ℂ D sin)
84 dvsin 23549 . . . . . . 7 (ℂ D sin) = cos
85 ffn 5958 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
8672, 85ax-mp 5 . . . . . . . 8 cos Fn ℂ
87 dffn5 6151 . . . . . . . 8 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
8886, 87mpbi 219 . . . . . . 7 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
8983, 84, 883eqtri 2636 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
9089a1i 11 . . . . 5 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
91 fveq2 6103 . . . . 5 (𝑥 = (𝑠 / 2) → (sin‘𝑥) = (sin‘(𝑠 / 2)))
92 fveq2 6103 . . . . 5 (𝑥 = (𝑠 / 2) → (cos‘𝑥) = (cos‘(𝑠 / 2)))
9332, 68, 17, 39, 71, 74, 77, 90, 91, 92dvmptco 23541 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑠 / 2)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑠 / 2)) · (1 / 2))))
9432, 16, 48, 59, 63, 66, 93dvmptdiv 38807 . . 3 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2))))
9532, 33, 47, 94, 75, 76dvmptdivc 23534 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
9614recnd 9947 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
9796halfcld 11154 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
9897sincld 14699 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
9998mulid2d 9937 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (1 · (sin‘(𝑠 / 2))) = (sin‘(𝑠 / 2)))
10097coscld 14700 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
101 2cnd 10970 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
10222a1i 11 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ≠ 0)
103100, 101, 102divrecd 10683 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) / 2) = ((cos‘(𝑠 / 2)) · (1 / 2)))
104103eqcomd 2616 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) · (1 / 2)) = ((cos‘(𝑠 / 2)) / 2))
105104oveq1d 6564 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) = (((cos‘(𝑠 / 2)) / 2) · 𝑠))
10699, 105oveq12d 6567 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) = ((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)))
107106oveq1d 6564 . . . . 5 (𝑠 ∈ (𝐴(,)𝐵) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) = (((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)))
108107oveq1d 6564 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) → ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2) = ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
109108mpteq2ia 4668 . . 3 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
110109a1i 11 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
11130, 95, 1103eqtrd 2648 1 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036  {csn 4125  {cpr 4127  cmpt 4643  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  cz 11254  (,)cioo 12046  [,]cicc 12049  cexp 12722  sincsin 14633  cosccos 14634  πcpi 14636  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator