Step | Hyp | Ref
| Expression |
1 | | elznn0nn 11268 |
. 2
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈
ℕ))) |
2 | | cnelprrecn 9908 |
. . . . . 6
⊢ ℂ
∈ {ℝ, ℂ} |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ℂ ∈ {ℝ, ℂ}) |
4 | | expcl 12740 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝑥↑𝑁) ∈
ℂ) |
5 | 4 | ancoms 468 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℂ)
→ (𝑥↑𝑁) ∈
ℂ) |
6 | | c0ex 9913 |
. . . . . . 7
⊢ 0 ∈
V |
7 | | ovex 6577 |
. . . . . . 7
⊢ (𝑁 · (𝑥↑(𝑁 − 1))) ∈ V |
8 | 6, 7 | ifex 4106 |
. . . . . 6
⊢ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V |
9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℂ)
→ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V) |
10 | | dvexp2 23523 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
11 | | difssd 3700 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℂ ∖ {0}) ⊆ ℂ) |
12 | | eqid 2610 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
13 | 12 | cnfldtop 22397 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) ∈ Top |
14 | 12 | cnfldtopon 22396 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
15 | 14 | toponunii 20547 |
. . . . . . . 8
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
16 | 15 | restid 15917 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
17 | 13, 16 | ax-mp 5 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
18 | 17 | eqcomi 2619 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
19 | 12 | cnfldhaus 22398 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈ Haus |
20 | | 0cn 9911 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
21 | 15 | sncld 20985 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈
ℂ) → {0} ∈
(Clsd‘(TopOpen‘ℂfld))) |
22 | 19, 20, 21 | mp2an 704 |
. . . . . . 7
⊢ {0}
∈ (Clsd‘(TopOpen‘ℂfld)) |
23 | 15 | cldopn 20645 |
. . . . . . 7
⊢ ({0}
∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ
∖ {0}) ∈ (TopOpen‘ℂfld)) |
24 | 22, 23 | ax-mp 5 |
. . . . . 6
⊢ (ℂ
∖ {0}) ∈ (TopOpen‘ℂfld) |
25 | 24 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℂ ∖ {0}) ∈
(TopOpen‘ℂfld)) |
26 | 3, 5, 9, 10, 11, 18, 12, 25 | dvmptres 23532 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (ℂ D (𝑥 ∈
(ℂ ∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦
if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
27 | | ifid 4075 |
. . . . . 6
⊢ if(𝑁 = 0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))) |
28 | | id 22 |
. . . . . . . . 9
⊢ (𝑁 = 0 → 𝑁 = 0) |
29 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (𝑁 − 1) = (0 −
1)) |
30 | 29 | oveq2d 6565 |
. . . . . . . . 9
⊢ (𝑁 = 0 → (𝑥↑(𝑁 − 1)) = (𝑥↑(0 − 1))) |
31 | 28, 30 | oveq12d 6567 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁 · (𝑥↑(𝑁 − 1))) = (0 · (𝑥↑(0 −
1)))) |
32 | | eldifsn 4260 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (ℂ ∖ {0})
↔ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
33 | | 0z 11265 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℤ |
34 | | peano2zm 11297 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℤ → (0 − 1) ∈ ℤ) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (0
− 1) ∈ ℤ |
36 | | expclz 12747 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ (0 − 1)
∈ ℤ) → (𝑥↑(0 − 1)) ∈
ℂ) |
37 | 35, 36 | mp3an3 1405 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥↑(0 − 1)) ∈
ℂ) |
38 | 32, 37 | sylbi 206 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ (𝑥↑(0 −
1)) ∈ ℂ) |
39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) → (𝑥↑(0 − 1)) ∈
ℂ) |
40 | 39 | mul02d 10113 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) → (0 · (𝑥↑(0 − 1))) = 0) |
41 | 31, 40 | sylan9eqr 2666 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) ∧ 𝑁 = 0)
→ (𝑁 · (𝑥↑(𝑁 − 1))) = 0) |
42 | 41 | ifeq1da 4066 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) → if(𝑁 =
0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) |
43 | 27, 42 | syl5eqr 2658 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (ℂ
∖ {0})) → (𝑁
· (𝑥↑(𝑁 − 1))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) |
44 | 43 | mpteq2dva 4672 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑁
· (𝑥↑(𝑁 − 1)))) = (𝑥 ∈ (ℂ ∖ {0})
↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
45 | 26, 44 | eqtr4d 2647 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (ℂ D (𝑥 ∈
(ℂ ∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
46 | | eldifi 3694 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ 𝑥 ∈
ℂ) |
47 | 46 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 𝑥 ∈
ℂ) |
48 | | simpll 786 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 𝑁 ∈
ℝ) |
49 | 48 | recnd 9947 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 𝑁 ∈
ℂ) |
50 | | nnnn0 11176 |
. . . . . . . 8
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℕ0) |
51 | 50 | ad2antlr 759 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ -𝑁 ∈
ℕ0) |
52 | | expneg2 12731 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)
→ (𝑥↑𝑁) = (1 / (𝑥↑-𝑁))) |
53 | 47, 49, 51, 52 | syl3anc 1318 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑𝑁) = (1 / (𝑥↑-𝑁))) |
54 | 53 | mpteq2dva 4672 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0})
↦ (𝑥↑𝑁)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 /
(𝑥↑-𝑁)))) |
55 | 54 | oveq2d 6565 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑥↑𝑁))) = (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 /
(𝑥↑-𝑁))))) |
56 | 2 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ℂ
∈ {ℝ, ℂ}) |
57 | | eldifsni 4261 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ 𝑥 ≠
0) |
58 | 57 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 𝑥 ≠
0) |
59 | | nnz 11276 |
. . . . . . . 8
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℤ) |
60 | 59 | ad2antlr 759 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ -𝑁 ∈
ℤ) |
61 | 47, 58, 60 | expclzd 12875 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑-𝑁) ∈
ℂ) |
62 | 47, 58, 60 | expne0d 12876 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑-𝑁) ≠ 0) |
63 | | eldifsn 4260 |
. . . . . 6
⊢ ((𝑥↑-𝑁) ∈ (ℂ ∖ {0}) ↔
((𝑥↑-𝑁) ∈ ℂ ∧ (𝑥↑-𝑁) ≠ 0)) |
64 | 61, 62, 63 | sylanbrc 695 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑-𝑁) ∈ (ℂ ∖
{0})) |
65 | | ovex 6577 |
. . . . . 6
⊢ (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V |
66 | 65 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V) |
67 | | simpr 476 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ 𝑦 ∈ (ℂ
∖ {0})) |
68 | | eldifsn 4260 |
. . . . . . 7
⊢ (𝑦 ∈ (ℂ ∖ {0})
↔ (𝑦 ∈ ℂ
∧ 𝑦 ≠
0)) |
69 | 67, 68 | sylib 207 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ (𝑦 ∈ ℂ
∧ 𝑦 ≠
0)) |
70 | | reccl 10571 |
. . . . . 6
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈
ℂ) |
71 | 69, 70 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ (1 / 𝑦) ∈
ℂ) |
72 | | negex 10158 |
. . . . . 6
⊢ -(1 /
(𝑦↑2)) ∈
V |
73 | 72 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ -(1 / (𝑦↑2))
∈ V) |
74 | | simpr 476 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈
ℂ) |
75 | 50 | ad2antlr 759 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → -𝑁 ∈
ℕ0) |
76 | 74, 75 | expcld 12870 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝑥↑-𝑁) ∈ ℂ) |
77 | 65 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V) |
78 | | dvexp 23522 |
. . . . . . 7
⊢ (-𝑁 ∈ ℕ → (ℂ
D (𝑥 ∈ ℂ ↦
(𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1))))) |
79 | 78 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ ℂ ↦
(𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1))))) |
80 | | difssd 3700 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
∖ {0}) ⊆ ℂ) |
81 | 24 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
∖ {0}) ∈ (TopOpen‘ℂfld)) |
82 | 56, 76, 77, 79, 80, 18, 12, 81 | dvmptres 23532 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑥↑-𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-𝑁 · (𝑥↑(-𝑁 − 1))))) |
83 | | ax-1cn 9873 |
. . . . . 6
⊢ 1 ∈
ℂ |
84 | | dvrec 23524 |
. . . . . 6
⊢ (1 ∈
ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 /
(𝑦↑2)))) |
85 | 83, 84 | mp1i 13 |
. . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑦 ∈ (ℂ
∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 /
(𝑦↑2)))) |
86 | | oveq2 6557 |
. . . . 5
⊢ (𝑦 = (𝑥↑-𝑁) → (1 / 𝑦) = (1 / (𝑥↑-𝑁))) |
87 | | oveq1 6556 |
. . . . . . 7
⊢ (𝑦 = (𝑥↑-𝑁) → (𝑦↑2) = ((𝑥↑-𝑁)↑2)) |
88 | 87 | oveq2d 6565 |
. . . . . 6
⊢ (𝑦 = (𝑥↑-𝑁) → (1 / (𝑦↑2)) = (1 / ((𝑥↑-𝑁)↑2))) |
89 | 88 | negeqd 10154 |
. . . . 5
⊢ (𝑦 = (𝑥↑-𝑁) → -(1 / (𝑦↑2)) = -(1 / ((𝑥↑-𝑁)↑2))) |
90 | 56, 56, 64, 66, 71, 73, 82, 85, 86, 89 | dvmptco 23541 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (1 / (𝑥↑-𝑁)))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-(1 /
((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))))) |
91 | | 2z 11286 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
92 | 91 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 2 ∈ ℤ) |
93 | | expmulz 12768 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (-𝑁 ∈ ℤ ∧ 2 ∈
ℤ)) → (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2)) |
94 | 47, 58, 60, 92, 93 | syl22anc 1319 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2)) |
95 | 94 | eqcomd 2616 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((𝑥↑-𝑁)↑2) = (𝑥↑(-𝑁 · 2))) |
96 | 95 | oveq2d 6565 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (1 / ((𝑥↑-𝑁)↑2)) = (1 / (𝑥↑(-𝑁 · 2)))) |
97 | 96 | negeqd 10154 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ -(1 / ((𝑥↑-𝑁)↑2)) = -(1 / (𝑥↑(-𝑁 · 2)))) |
98 | | peano2zm 11297 |
. . . . . . . . . 10
⊢ (-𝑁 ∈ ℤ → (-𝑁 − 1) ∈
ℤ) |
99 | 60, 98 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 − 1)
∈ ℤ) |
100 | 47, 58, 99 | expclzd 12875 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑(-𝑁 − 1)) ∈
ℂ) |
101 | 49, 100 | mulneg1d 10362 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · (𝑥↑(-𝑁 − 1))) = -(𝑁 · (𝑥↑(-𝑁 − 1)))) |
102 | 97, 101 | oveq12d 6567 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1))))) |
103 | | zmulcl 11303 |
. . . . . . . . . 10
⊢ ((-𝑁 ∈ ℤ ∧ 2 ∈
ℤ) → (-𝑁
· 2) ∈ ℤ) |
104 | 60, 91, 103 | sylancl 693 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · 2)
∈ ℤ) |
105 | 47, 58, 104 | expclzd 12875 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑(-𝑁 · 2)) ∈
ℂ) |
106 | 47, 58, 104 | expne0d 12876 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑(-𝑁 · 2)) ≠
0) |
107 | 105, 106 | reccld 10673 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (1 / (𝑥↑(-𝑁 · 2))) ∈
ℂ) |
108 | 49, 100 | mulcld 9939 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑁 · (𝑥↑(-𝑁 − 1))) ∈
ℂ) |
109 | 107, 108 | mul2negd 10364 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1)))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1))))) |
110 | 107, 49, 100 | mul12d 10124 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))))) |
111 | 47, 58, 104, 99 | expsubd 12881 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2)))) |
112 | | nncn 10905 |
. . . . . . . . . . . . 13
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℂ) |
113 | 112 | ad2antlr 759 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ -𝑁 ∈
ℂ) |
114 | 83 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ 1 ∈ ℂ) |
115 | 104 | zcnd 11359 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · 2)
∈ ℂ) |
116 | 113, 114,
115 | sub32d 10303 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((-𝑁 − 1)
− (-𝑁 · 2)) =
((-𝑁 − (-𝑁 · 2)) −
1)) |
117 | 113 | times2d 11153 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · 2) =
(-𝑁 + -𝑁)) |
118 | 113, 49 | negsubd 10277 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 + -𝑁) = (-𝑁 − 𝑁)) |
119 | 117, 118 | eqtrd 2644 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 · 2) =
(-𝑁 − 𝑁)) |
120 | 119 | oveq2d 6565 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 − (-𝑁 · 2)) = (-𝑁 − (-𝑁 − 𝑁))) |
121 | 113, 49 | nncand 10276 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 − (-𝑁 − 𝑁)) = 𝑁) |
122 | 120, 121 | eqtrd 2644 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-𝑁 − (-𝑁 · 2)) = 𝑁) |
123 | 122 | oveq1d 6564 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((-𝑁 − (-𝑁 · 2)) − 1) =
(𝑁 −
1)) |
124 | 116, 123 | eqtrd 2644 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((-𝑁 − 1)
− (-𝑁 · 2)) =
(𝑁 −
1)) |
125 | 124 | oveq2d 6565 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = (𝑥↑(𝑁 − 1))) |
126 | 100, 105,
106 | divrec2d 10684 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))) |
127 | 111, 125,
126 | 3eqtr3rd 2653 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))) = (𝑥↑(𝑁 − 1))) |
128 | 127 | oveq2d 6565 |
. . . . . . 7
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (𝑁 · ((1 /
(𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
129 | 110, 128 | eqtrd 2644 |
. . . . . 6
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
130 | 102, 109,
129 | 3eqtrd 2648 |
. . . . 5
⊢ (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0}))
→ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
131 | 130 | mpteq2dva 4672 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0})
↦ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1))))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
132 | 55, 90, 131 | 3eqtrd 2648 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
133 | 45, 132 | jaoi 393 |
. 2
⊢ ((𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈ ℕ)) →
(ℂ D (𝑥 ∈
(ℂ ∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
134 | 1, 133 | sylbi 206 |
1
⊢ (𝑁 ∈ ℤ → (ℂ
D (𝑥 ∈ (ℂ
∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |