Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp3 Structured version   Visualization version   GIF version

Theorem dvexp3 23545
 Description: Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
dvexp3 (𝑁 ∈ ℤ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 11268 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 cnelprrecn 9908 . . . . . 6 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → ℂ ∈ {ℝ, ℂ})
4 expcl 12740 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑥𝑁) ∈ ℂ)
54ancoms 468 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℂ) → (𝑥𝑁) ∈ ℂ)
6 c0ex 9913 . . . . . . 7 0 ∈ V
7 ovex 6577 . . . . . . 7 (𝑁 · (𝑥↑(𝑁 − 1))) ∈ V
86, 7ifex 4106 . . . . . 6 if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V
98a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℂ) → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V)
10 dvexp2 23523 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
11 difssd 3700 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ ∖ {0}) ⊆ ℂ)
12 eqid 2610 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtop 22397 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
1412cnfldtopon 22396 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1514toponunii 20547 . . . . . . . 8 ℂ = (TopOpen‘ℂfld)
1615restid 15917 . . . . . . 7 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
1713, 16ax-mp 5 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
1817eqcomi 2619 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
1912cnfldhaus 22398 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Haus
20 0cn 9911 . . . . . . . 8 0 ∈ ℂ
2115sncld 20985 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈ ℂ) → {0} ∈ (Clsd‘(TopOpen‘ℂfld)))
2219, 20, 21mp2an 704 . . . . . . 7 {0} ∈ (Clsd‘(TopOpen‘ℂfld))
2315cldopn 20645 . . . . . . 7 ({0} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
2422, 23ax-mp 5 . . . . . 6 (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)
2524a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
263, 5, 9, 10, 11, 18, 12, 25dvmptres 23532 . . . 4 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
27 ifid 4075 . . . . . 6 if(𝑁 = 0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))
28 id 22 . . . . . . . . 9 (𝑁 = 0 → 𝑁 = 0)
29 oveq1 6556 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
3029oveq2d 6565 . . . . . . . . 9 (𝑁 = 0 → (𝑥↑(𝑁 − 1)) = (𝑥↑(0 − 1)))
3128, 30oveq12d 6567 . . . . . . . 8 (𝑁 = 0 → (𝑁 · (𝑥↑(𝑁 − 1))) = (0 · (𝑥↑(0 − 1))))
32 eldifsn 4260 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
33 0z 11265 . . . . . . . . . . . . 13 0 ∈ ℤ
34 peano2zm 11297 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
3533, 34ax-mp 5 . . . . . . . . . . . 12 (0 − 1) ∈ ℤ
36 expclz 12747 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ (0 − 1) ∈ ℤ) → (𝑥↑(0 − 1)) ∈ ℂ)
3735, 36mp3an3 1405 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥↑(0 − 1)) ∈ ℂ)
3832, 37sylbi 206 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) → (𝑥↑(0 − 1)) ∈ ℂ)
3938adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(0 − 1)) ∈ ℂ)
4039mul02d 10113 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (0 · (𝑥↑(0 − 1))) = 0)
4131, 40sylan9eqr 2666 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑁 = 0) → (𝑁 · (𝑥↑(𝑁 − 1))) = 0)
4241ifeq1da 4066 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → if(𝑁 = 0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))
4327, 42syl5eqr 2658 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · (𝑥↑(𝑁 − 1))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))
4443mpteq2dva 4672 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
4526, 44eqtr4d 2647 . . 3 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
46 eldifi 3694 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
4746adantl 481 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
48 simpll 786 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑁 ∈ ℝ)
4948recnd 9947 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑁 ∈ ℂ)
50 nnnn0 11176 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
5150ad2antlr 759 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℕ0)
52 expneg2 12731 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝑥𝑁) = (1 / (𝑥↑-𝑁)))
5347, 49, 51, 52syl3anc 1318 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥𝑁) = (1 / (𝑥↑-𝑁)))
5453mpteq2dva 4672 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁))))
5554oveq2d 6565 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁)))))
562a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ℂ ∈ {ℝ, ℂ})
57 eldifsni 4261 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
5857adantl 481 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
59 nnz 11276 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
6059ad2antlr 759 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℤ)
6147, 58, 60expclzd 12875 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ∈ ℂ)
6247, 58, 60expne0d 12876 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ≠ 0)
63 eldifsn 4260 . . . . . 6 ((𝑥↑-𝑁) ∈ (ℂ ∖ {0}) ↔ ((𝑥↑-𝑁) ∈ ℂ ∧ (𝑥↑-𝑁) ≠ 0))
6461, 62, 63sylanbrc 695 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ∈ (ℂ ∖ {0}))
65 ovex 6577 . . . . . 6 (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V
6665a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V)
67 simpr 476 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
68 eldifsn 4260 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
6967, 68sylib 207 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
70 reccl 10571 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
7169, 70syl 17 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
72 negex 10158 . . . . . 6 -(1 / (𝑦↑2)) ∈ V
7372a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(1 / (𝑦↑2)) ∈ V)
74 simpr 476 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
7550ad2antlr 759 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → -𝑁 ∈ ℕ0)
7674, 75expcld 12870 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝑥↑-𝑁) ∈ ℂ)
7765a1i 11 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V)
78 dvexp 23522 . . . . . . 7 (-𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
7978adantl 481 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
80 difssd 3700 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ ∖ {0}) ⊆ ℂ)
8124a1i 11 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
8256, 76, 77, 79, 80, 18, 12, 81dvmptres 23532 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥↑-𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
83 ax-1cn 9873 . . . . . 6 1 ∈ ℂ
84 dvrec 23524 . . . . . 6 (1 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
8583, 84mp1i 13 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
86 oveq2 6557 . . . . 5 (𝑦 = (𝑥↑-𝑁) → (1 / 𝑦) = (1 / (𝑥↑-𝑁)))
87 oveq1 6556 . . . . . . 7 (𝑦 = (𝑥↑-𝑁) → (𝑦↑2) = ((𝑥↑-𝑁)↑2))
8887oveq2d 6565 . . . . . 6 (𝑦 = (𝑥↑-𝑁) → (1 / (𝑦↑2)) = (1 / ((𝑥↑-𝑁)↑2)))
8988negeqd 10154 . . . . 5 (𝑦 = (𝑥↑-𝑁) → -(1 / (𝑦↑2)) = -(1 / ((𝑥↑-𝑁)↑2)))
9056, 56, 64, 66, 71, 73, 82, 85, 86, 89dvmptco 23541 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁)))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1))))))
91 2z 11286 . . . . . . . . . . . 12 2 ∈ ℤ
9291a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 2 ∈ ℤ)
93 expmulz 12768 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (-𝑁 ∈ ℤ ∧ 2 ∈ ℤ)) → (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2))
9447, 58, 60, 92, 93syl22anc 1319 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2))
9594eqcomd 2616 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑥↑-𝑁)↑2) = (𝑥↑(-𝑁 · 2)))
9695oveq2d 6565 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (1 / ((𝑥↑-𝑁)↑2)) = (1 / (𝑥↑(-𝑁 · 2))))
9796negeqd 10154 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -(1 / ((𝑥↑-𝑁)↑2)) = -(1 / (𝑥↑(-𝑁 · 2))))
98 peano2zm 11297 . . . . . . . . . 10 (-𝑁 ∈ ℤ → (-𝑁 − 1) ∈ ℤ)
9960, 98syl 17 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − 1) ∈ ℤ)
10047, 58, 99expclzd 12875 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 − 1)) ∈ ℂ)
10149, 100mulneg1d 10362 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · (𝑥↑(-𝑁 − 1))) = -(𝑁 · (𝑥↑(-𝑁 − 1))))
10297, 101oveq12d 6567 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1)))))
103 zmulcl 11303 . . . . . . . . . 10 ((-𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (-𝑁 · 2) ∈ ℤ)
10460, 91, 103sylancl 693 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) ∈ ℤ)
10547, 58, 104expclzd 12875 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) ∈ ℂ)
10647, 58, 104expne0d 12876 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) ≠ 0)
107105, 106reccld 10673 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (1 / (𝑥↑(-𝑁 · 2))) ∈ ℂ)
10849, 100mulcld 9939 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · (𝑥↑(-𝑁 − 1))) ∈ ℂ)
109107, 108mul2negd 10364 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1)))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))))
110107, 49, 100mul12d 10124 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))))
11147, 58, 104, 99expsubd 12881 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2))))
112 nncn 10905 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ → -𝑁 ∈ ℂ)
113112ad2antlr 759 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℂ)
11483a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 1 ∈ ℂ)
115104zcnd 11359 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) ∈ ℂ)
116113, 114, 115sub32d 10303 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − 1) − (-𝑁 · 2)) = ((-𝑁 − (-𝑁 · 2)) − 1))
117113times2d 11153 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) = (-𝑁 + -𝑁))
118113, 49negsubd 10277 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 + -𝑁) = (-𝑁𝑁))
119117, 118eqtrd 2644 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) = (-𝑁𝑁))
120119oveq2d 6565 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁 · 2)) = (-𝑁 − (-𝑁𝑁)))
121113, 49nncand 10276 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁𝑁)) = 𝑁)
122120, 121eqtrd 2644 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁 · 2)) = 𝑁)
123122oveq1d 6564 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − (-𝑁 · 2)) − 1) = (𝑁 − 1))
124116, 123eqtrd 2644 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − 1) − (-𝑁 · 2)) = (𝑁 − 1))
125124oveq2d 6565 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = (𝑥↑(𝑁 − 1)))
126100, 105, 106divrec2d 10684 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))))
127111, 125, 1263eqtr3rd 2653 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))) = (𝑥↑(𝑁 − 1)))
128127oveq2d 6565 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
129110, 128eqtrd 2644 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
130102, 109, 1293eqtrd 2648 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
131130mpteq2dva 4672 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1))))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
13255, 90, 1313eqtrd 2648 . . 3 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
13345, 132jaoi 393 . 2 ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
1341, 133sylbi 206 1 (𝑁 ∈ ℤ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ∖ cdif 3537  ifcif 4036  {csn 4125  {cpr 4127   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ↑cexp 12722   ↾t crest 15904  TopOpenctopn 15905  ℂfldccnfld 19567  Topctop 20517  Clsdccld 20630  Hauscha 20922   D cdv 23433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator