Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocucvr Structured version   Visualization version   GIF version

Theorem dya2iocucvr 29673
 Description: The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocucvr ran 𝑅 = (ℝ × ℝ)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑣,𝑢,𝑛)

Proof of Theorem dya2iocucvr
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unissb 4405 . . 3 ( ran 𝑅 ⊆ (ℝ × ℝ) ↔ ∀𝑑 ∈ ran 𝑅 𝑑 ⊆ (ℝ × ℝ))
2 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
3 vex 3176 . . . . . 6 𝑢 ∈ V
4 vex 3176 . . . . . 6 𝑣 ∈ V
53, 4xpex 6860 . . . . 5 (𝑢 × 𝑣) ∈ V
62, 5elrnmpt2 6671 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
7 simpr 476 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
8 pwssb 4548 . . . . . . . . . . . 12 (ran 𝐼 ⊆ 𝒫 ℝ ↔ ∀𝑑 ∈ ran 𝐼 𝑑 ⊆ ℝ)
9 dya2ioc.1 . . . . . . . . . . . . . 14 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
10 ovex 6577 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
119, 10elrnmpt2 6671 . . . . . . . . . . . . 13 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
12 simpr 476 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
13 simpll 786 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℤ)
1413zred 11358 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℝ)
15 2re 10967 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℝ)
17 2ne0 10990 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1817a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ≠ 0)
19 simplr 788 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑛 ∈ ℤ)
2016, 18, 19reexpclzd 12896 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ∈ ℝ)
21 2cnd 10970 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℂ)
2221, 18, 19expne0d 12876 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ≠ 0)
2314, 20, 22redivcld 10732 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 / (2↑𝑛)) ∈ ℝ)
24 1red 9934 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 1 ∈ ℝ)
2514, 24readdcld 9948 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 + 1) ∈ ℝ)
2625, 20, 22redivcld 10732 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
2726rexrd 9968 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
28 icossre 12125 . . . . . . . . . . . . . . . . 17 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
2923, 27, 28syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
3012, 29eqsstrd 3602 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ⊆ ℝ)
3130ex 449 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ))
3231rexlimivv 3018 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ)
3311, 32sylbi 206 . . . . . . . . . . . 12 (𝑑 ∈ ran 𝐼𝑑 ⊆ ℝ)
348, 33mprgbir 2911 . . . . . . . . . . 11 ran 𝐼 ⊆ 𝒫 ℝ
3534sseli 3564 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
3635elpwid 4118 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
3734sseli 3564 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
3837elpwid 4118 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
39 xpss12 5148 . . . . . . . . 9 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4036, 38, 39syl2an 493 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4140adantr 480 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
427, 41eqsstrd 3602 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ⊆ (ℝ × ℝ))
4342ex 449 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ)))
4443rexlimivv 3018 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ))
456, 44sylbi 206 . . 3 (𝑑 ∈ ran 𝑅𝑑 ⊆ (ℝ × ℝ))
461, 45mprgbir 2911 . 2 ran 𝑅 ⊆ (ℝ × ℝ)
47 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
48 retop 22375 . . . . . 6 (topGen‘ran (,)) ∈ Top
4947, 48eqeltri 2684 . . . . 5 𝐽 ∈ Top
5049, 49txtopi 21203 . . . 4 (𝐽 ×t 𝐽) ∈ Top
51 uniretop 22376 . . . . . . 7 ℝ = (topGen‘ran (,))
5247unieqi 4381 . . . . . . 7 𝐽 = (topGen‘ran (,))
5351, 52eqtr4i 2635 . . . . . 6 ℝ = 𝐽
5449, 49, 53, 53txunii 21206 . . . . 5 (ℝ × ℝ) = (𝐽 ×t 𝐽)
5554topopn 20536 . . . 4 ((𝐽 ×t 𝐽) ∈ Top → (ℝ × ℝ) ∈ (𝐽 ×t 𝐽))
5647, 9, 2dya2iocuni 29672 . . . 4 ((ℝ × ℝ) ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ))
5750, 55, 56mp2b 10 . . 3 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)
58 simpr 476 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 = (ℝ × ℝ))
59 elpwi 4117 . . . . . . 7 (𝑐 ∈ 𝒫 ran 𝑅𝑐 ⊆ ran 𝑅)
6059adantr 480 . . . . . 6 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ⊆ ran 𝑅)
6160unissd 4398 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ran 𝑅)
6258, 61eqsstr3d 3603 . . . 4 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → (ℝ × ℝ) ⊆ ran 𝑅)
6362rexlimiva 3010 . . 3 (∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ) → (ℝ × ℝ) ⊆ ran 𝑅)
6457, 63ax-mp 5 . 2 (ℝ × ℝ) ⊆ ran 𝑅
6546, 64eqssi 3584 1 ran 𝑅 = (ℝ × ℝ)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   ⊆ wss 3540  𝒫 cpw 4108  ∪ cuni 4372   × cxp 5036  ran crn 5039  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818  ℝ*cxr 9952   / cdiv 10563  2c2 10947  ℤcz 11254  (,)cioo 12046  [,)cico 12048  ↑cexp 12722  topGenctg 15921  Topctop 20517   ×t ctx 21173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-refld 19770  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-fcls 21555  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-cfil 22861  df-cmet 22863  df-cms 22940  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-logb 24303 This theorem is referenced by:  sxbrsigalem1  29674  sxbrsigalem2  29675  sxbrsigalem5  29677
 Copyright terms: Public domain W3C validator