Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem8 Structured version   Visualization version   GIF version

Theorem stirlinglem8 38974
Description: If 𝐴 converges to 𝐶, then 𝐹 converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem8.1 𝑛𝜑
stirlinglem8.2 𝑛𝐴
stirlinglem8.3 𝑛𝐷
stirlinglem8.4 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem8.5 (𝜑𝐴:ℕ⟶ℝ+)
stirlinglem8.6 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
stirlinglem8.7 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
stirlinglem8.8 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
stirlinglem8.9 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
stirlinglem8.10 (𝜑𝐶 ∈ ℝ+)
stirlinglem8.11 (𝜑𝐴𝐶)
Assertion
Ref Expression
stirlinglem8 (𝜑𝐹 ⇝ (𝐶↑2))

Proof of Theorem stirlinglem8
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem8.1 . . 3 𝑛𝜑
2 stirlinglem8.7 . . . 4 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
3 nfmpt1 4675 . . . 4 𝑛(𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
42, 3nfcxfr 2749 . . 3 𝑛𝐿
5 stirlinglem8.8 . . . 4 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
6 nfmpt1 4675 . . . 4 𝑛(𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
75, 6nfcxfr 2749 . . 3 𝑛𝑀
8 stirlinglem8.6 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
9 nfmpt1 4675 . . . 4 𝑛(𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
108, 9nfcxfr 2749 . . 3 𝑛𝐹
11 nnuz 11599 . . 3 ℕ = (ℤ‘1)
12 1zzd 11285 . . 3 (𝜑 → 1 ∈ ℤ)
13 stirlinglem8.2 . . . 4 𝑛𝐴
14 stirlinglem8.5 . . . . 5 (𝜑𝐴:ℕ⟶ℝ+)
15 rrpsscn 38655 . . . . 5 + ⊆ ℂ
16 fss 5969 . . . . 5 ((𝐴:ℕ⟶ℝ+ ∧ ℝ+ ⊆ ℂ) → 𝐴:ℕ⟶ℂ)
1714, 15, 16sylancl 693 . . . 4 (𝜑𝐴:ℕ⟶ℂ)
18 stirlinglem8.11 . . . 4 (𝜑𝐴𝐶)
19 4nn0 11188 . . . . 5 4 ∈ ℕ0
2019a1i 11 . . . 4 (𝜑 → 4 ∈ ℕ0)
21 nnex 10903 . . . . . . 7 ℕ ∈ V
2221mptex 6390 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4)) ∈ V
232, 22eqeltri 2684 . . . . 5 𝐿 ∈ V
2423a1i 11 . . . 4 (𝜑𝐿 ∈ V)
25 simpr 476 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2614ffvelrnda 6267 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℝ+)
2726rpcnd 11750 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
2819a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 4 ∈ ℕ0)
2927, 28expcld 12870 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛)↑4) ∈ ℂ)
302fvmpt2 6200 . . . . 5 ((𝑛 ∈ ℕ ∧ ((𝐴𝑛)↑4) ∈ ℂ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
3125, 29, 30syl2anc 691 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
321, 13, 4, 11, 12, 17, 18, 20, 24, 31climexp 38672 . . 3 (𝜑𝐿 ⇝ (𝐶↑4))
3321mptex 6390 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2))) ∈ V
348, 33eqeltri 2684 . . . 4 𝐹 ∈ V
3534a1i 11 . . 3 (𝜑𝐹 ∈ V)
36 stirlinglem8.3 . . . 4 𝑛𝐷
3717adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶ℂ)
38 2nn 11062 . . . . . . . . 9 2 ∈ ℕ
3938a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 2 ∈ ℕ)
40 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
4139, 40nnmulcld 10945 . . . . . . 7 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
4241adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
4337, 42ffvelrnd 6268 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℂ)
44 stirlinglem8.4 . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
451, 43, 44fmptdf 6294 . . . 4 (𝜑𝐷:ℕ⟶ℂ)
46 nfmpt1 4675 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ (2 · 𝑛))
47 fex 6394 . . . . . 6 ((𝐴:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐴 ∈ V)
4817, 21, 47sylancl 693 . . . . 5 (𝜑𝐴 ∈ V)
49 1nn 10908 . . . . . . 7 1 ∈ ℕ
50 2cnd 10970 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
51 1cnd 9935 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
5250, 51mulcld 9939 . . . . . . 7 (𝜑 → (2 · 1) ∈ ℂ)
53 oveq2 6557 . . . . . . . 8 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
54 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑛 ∈ ℕ ↦ (2 · 𝑛))
5553, 54fvmptg 6189 . . . . . . 7 ((1 ∈ ℕ ∧ (2 · 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 · 1))
5649, 52, 55sylancr 694 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 · 1))
5738a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5849a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
5957, 58nnmulcld 10945 . . . . . 6 (𝜑 → (2 · 1) ∈ ℕ)
6056, 59eqeltrd 2688 . . . . 5 (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) ∈ ℕ)
61 1red 9934 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℝ)
6239nnred 10912 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℝ)
6341nnred 10912 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
6439nnge1d 10940 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ≤ 2)
6561, 62, 63, 64leadd2dd 10521 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≤ ((2 · 𝑛) + 2))
6654fvmpt2 6200 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
6741, 66mpdan 699 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
6867oveq1d 6564 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) = ((2 · 𝑛) + 1))
69 oveq2 6557 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
7069cbvmptv 4678 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑘 ∈ ℕ ↦ (2 · 𝑘))
7170a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑘 ∈ ℕ ↦ (2 · 𝑘)))
72 simpr 476 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1))
7372oveq2d 6565 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → (2 · 𝑘) = (2 · (𝑛 + 1)))
74 peano2nn 10909 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
7539, 74nnmulcld 10945 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) ∈ ℕ)
7671, 73, 74, 75fvmptd 6197 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) = (2 · (𝑛 + 1)))
77 2cnd 10970 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℂ)
78 nncn 10905 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
79 1cnd 9935 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℂ)
8077, 78, 79adddid 9943 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
8177mulid1d 9936 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 1) = 2)
8281oveq2d 6565 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + (2 · 1)) = ((2 · 𝑛) + 2))
8376, 80, 823eqtrd 2648 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) = ((2 · 𝑛) + 2))
8465, 68, 833brtr4d 4615 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)))
8541nnzd 11357 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℤ)
8667, 85eqeltrd 2688 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) ∈ ℤ)
8786peano2zd 11361 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ)
8875nnzd 11357 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) ∈ ℤ)
8976, 88eqeltrd 2688 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ ℤ)
90 eluz 11577 . . . . . . . 8 (((((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ ∧ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ ℤ) → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))))
9187, 89, 90syl2anc 691 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))))
9284, 91mpbird 246 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)))
9392adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)))
9421mptex 6390 . . . . . . 7 (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) ∈ V
9544, 94eqeltri 2684 . . . . . 6 𝐷 ∈ V
9695a1i 11 . . . . 5 (𝜑𝐷 ∈ V)
9744fvmpt2 6200 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℂ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
9825, 43, 97syl2anc 691 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
9967adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
10099eqcomd 2616 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2 · 𝑛) = ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛))
101100fveq2d 6107 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)))
10298, 101eqtrd 2644 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)))
1031, 13, 36, 46, 11, 12, 48, 27, 18, 60, 93, 96, 102climsuse 38675 . . . 4 (𝜑𝐷𝐶)
104 2nn0 11186 . . . . 5 2 ∈ ℕ0
105104a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ0)
10621mptex 6390 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2)) ∈ V
1075, 106eqeltri 2684 . . . . 5 𝑀 ∈ V
108107a1i 11 . . . 4 (𝜑𝑀 ∈ V)
109 stirlinglem8.9 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
110109rpcnd 11750 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℂ)
111110sqcld 12868 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) ∈ ℂ)
1125fvmpt2 6200 . . . . 5 ((𝑛 ∈ ℕ ∧ ((𝐷𝑛)↑2) ∈ ℂ) → (𝑀𝑛) = ((𝐷𝑛)↑2))
11325, 111, 112syl2anc 691 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) = ((𝐷𝑛)↑2))
1141, 36, 7, 11, 12, 45, 103, 105, 108, 113climexp 38672 . . 3 (𝜑𝑀 ⇝ (𝐶↑2))
115 stirlinglem8.10 . . . . 5 (𝜑𝐶 ∈ ℝ+)
116115rpcnd 11750 . . . 4 (𝜑𝐶 ∈ ℂ)
117115rpne0d 11753 . . . 4 (𝜑𝐶 ≠ 0)
118 2z 11286 . . . . 5 2 ∈ ℤ
119118a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
120116, 117, 119expne0d 12876 . . 3 (𝜑 → (𝐶↑2) ≠ 0)
1211, 29, 2fmptdf 6294 . . . 4 (𝜑𝐿:ℕ⟶ℂ)
122121ffvelrnda 6267 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) ∈ ℂ)
123113, 111eqeltrd 2688 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℂ)
12498oveq1d 6564 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) = ((𝐴‘(2 · 𝑛))↑2))
125113, 124eqtrd 2644 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) = ((𝐴‘(2 · 𝑛))↑2))
12698, 109eqeltrrd 2689 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℝ+)
127118a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
128126, 127rpexpcld 12894 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴‘(2 · 𝑛))↑2) ∈ ℝ+)
129125, 128eqeltrd 2688 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℝ+)
130129rpne0d 11753 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ≠ 0)
131130neneqd 2787 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ¬ (𝑀𝑛) = 0)
132 0cn 9911 . . . . . 6 0 ∈ ℂ
133 elsn2g 4157 . . . . . 6 (0 ∈ ℂ → ((𝑀𝑛) ∈ {0} ↔ (𝑀𝑛) = 0))
134132, 133ax-mp 5 . . . . 5 ((𝑀𝑛) ∈ {0} ↔ (𝑀𝑛) = 0)
135131, 134sylnibr 318 . . . 4 ((𝜑𝑛 ∈ ℕ) → ¬ (𝑀𝑛) ∈ {0})
136123, 135eldifd 3551 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ (ℂ ∖ {0}))
13728nn0zd 11356 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 4 ∈ ℤ)
13826, 137rpexpcld 12894 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛)↑4) ∈ ℝ+)
139109, 127rpexpcld 12894 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) ∈ ℝ+)
140138, 139rpdivcld 11765 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℝ+)
1418fvmpt2 6200 . . . . 5 ((𝑛 ∈ ℕ ∧ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℝ+) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
14225, 140, 141syl2anc 691 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
1432fvmpt2 6200 . . . . . 6 ((𝑛 ∈ ℕ ∧ ((𝐴𝑛)↑4) ∈ ℝ+) → (𝐿𝑛) = ((𝐴𝑛)↑4))
14425, 138, 143syl2anc 691 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
145144, 113oveq12d 6567 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐿𝑛) / (𝑀𝑛)) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
146142, 145eqtr4d 2647 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐿𝑛) / (𝑀𝑛)))
1471, 4, 7, 10, 11, 12, 32, 35, 114, 120, 122, 136, 146climdivf 38679 . 2 (𝜑𝐹 ⇝ ((𝐶↑4) / (𝐶↑2)))
148 2cn 10968 . . . . . 6 2 ∈ ℂ
149 2p2e4 11021 . . . . . 6 (2 + 2) = 4
150148, 148, 149mvlladdi 10178 . . . . 5 2 = (4 − 2)
151150a1i 11 . . . 4 (𝜑 → 2 = (4 − 2))
152151oveq2d 6565 . . 3 (𝜑 → (𝐶↑2) = (𝐶↑(4 − 2)))
15320nn0zd 11356 . . . 4 (𝜑 → 4 ∈ ℤ)
154116, 117, 119, 153expsubd 12881 . . 3 (𝜑 → (𝐶↑(4 − 2)) = ((𝐶↑4) / (𝐶↑2)))
155152, 154eqtrd 2644 . 2 (𝜑 → (𝐶↑2) = ((𝐶↑4) / (𝐶↑2)))
156147, 155breqtrrd 4611 1 (𝜑𝐹 ⇝ (𝐶↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  Vcvv 3173  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  4c4 10949  0cn0 11169  cz 11254  cuz 11563  +crp 11708  cexp 12722  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489
This theorem is referenced by:  stirlinglem15  38981
  Copyright terms: Public domain W3C validator