Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climexp Structured version   Visualization version   GIF version

Theorem climexp 38672
Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climexp.1 𝑘𝜑
climexp.2 𝑘𝐹
climexp.3 𝑘𝐻
climexp.4 𝑍 = (ℤ𝑀)
climexp.5 (𝜑𝑀 ∈ ℤ)
climexp.6 (𝜑𝐹:𝑍⟶ℂ)
climexp.7 (𝜑𝐹𝐴)
climexp.8 (𝜑𝑁 ∈ ℕ0)
climexp.9 (𝜑𝐻𝑉)
climexp.10 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)↑𝑁))
Assertion
Ref Expression
climexp (𝜑𝐻 ⇝ (𝐴𝑁))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climexp
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climexp.4 . . . 4 𝑍 = (ℤ𝑀)
2 climexp.5 . . . 4 (𝜑𝑀 ∈ ℤ)
3 climexp.8 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
4 eqid 2610 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54expcn 22483 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
63, 5syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
74cncfcn1 22521 . . . . 5 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
86, 7syl6eleqr 2699 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
9 climexp.6 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
10 climexp.7 . . . 4 (𝜑𝐹𝐴)
11 climcl 14078 . . . . 5 (𝐹𝐴𝐴 ∈ ℂ)
1210, 11syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
131, 2, 8, 9, 10, 12climcncf 22511 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ⇝ ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘𝐴))
14 eqidd 2611 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
15 simpr 476 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
1615oveq1d 6564 . . . 4 ((𝜑𝑥 = 𝐴) → (𝑥𝑁) = (𝐴𝑁))
1712, 3expcld 12870 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℂ)
1814, 16, 12, 17fvmptd 6197 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘𝐴) = (𝐴𝑁))
1913, 18breqtrd 4609 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ⇝ (𝐴𝑁))
20 climexp.9 . . 3 (𝜑𝐻𝑉)
21 cnex 9896 . . . . 5 ℂ ∈ V
2221mptex 6390 . . . 4 (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ V
23 fvex 6113 . . . . . 6 (ℤ𝑀) ∈ V
241, 23eqeltri 2684 . . . . 5 𝑍 ∈ V
25 fex 6394 . . . . 5 ((𝐹:𝑍⟶ℂ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
269, 24, 25sylancl 693 . . . 4 (𝜑𝐹 ∈ V)
27 coexg 7010 . . . 4 (((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ V ∧ 𝐹 ∈ V) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ∈ V)
2822, 26, 27sylancr 694 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ∈ V)
29 eqidd 2611 . . . . 5 ((𝜑𝑗𝑍) → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
30 simpr 476 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑥 = (𝐹𝑗)) → 𝑥 = (𝐹𝑗))
3130oveq1d 6564 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑥 = (𝐹𝑗)) → (𝑥𝑁) = ((𝐹𝑗)↑𝑁))
329ffvelrnda 6267 . . . . 5 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
333adantr 480 . . . . . 6 ((𝜑𝑗𝑍) → 𝑁 ∈ ℕ0)
3432, 33expcld 12870 . . . . 5 ((𝜑𝑗𝑍) → ((𝐹𝑗)↑𝑁) ∈ ℂ)
3529, 31, 32, 34fvmptd 6197 . . . 4 ((𝜑𝑗𝑍) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑗)) = ((𝐹𝑗)↑𝑁))
36 fvco3 6185 . . . . 5 ((𝐹:𝑍⟶ℂ ∧ 𝑗𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑗)))
379, 36sylan 487 . . . 4 ((𝜑𝑗𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑗)))
38 climexp.1 . . . . . . 7 𝑘𝜑
39 nfv 1830 . . . . . . 7 𝑘 𝑗𝑍
4038, 39nfan 1816 . . . . . 6 𝑘(𝜑𝑗𝑍)
41 climexp.3 . . . . . . . 8 𝑘𝐻
42 nfcv 2751 . . . . . . . 8 𝑘𝑗
4341, 42nffv 6110 . . . . . . 7 𝑘(𝐻𝑗)
44 climexp.2 . . . . . . . . 9 𝑘𝐹
4544, 42nffv 6110 . . . . . . . 8 𝑘(𝐹𝑗)
46 nfcv 2751 . . . . . . . 8 𝑘
47 nfcv 2751 . . . . . . . 8 𝑘𝑁
4845, 46, 47nfov 6575 . . . . . . 7 𝑘((𝐹𝑗)↑𝑁)
4943, 48nfeq 2762 . . . . . 6 𝑘(𝐻𝑗) = ((𝐹𝑗)↑𝑁)
5040, 49nfim 1813 . . . . 5 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗)↑𝑁))
51 eleq1 2676 . . . . . . 7 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
5251anbi2d 736 . . . . . 6 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
53 fveq2 6103 . . . . . . 7 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
54 fveq2 6103 . . . . . . . 8 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
5554oveq1d 6564 . . . . . . 7 (𝑘 = 𝑗 → ((𝐹𝑘)↑𝑁) = ((𝐹𝑗)↑𝑁))
5653, 55eqeq12d 2625 . . . . . 6 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘)↑𝑁) ↔ (𝐻𝑗) = ((𝐹𝑗)↑𝑁)))
5752, 56imbi12d 333 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)↑𝑁)) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗)↑𝑁))))
58 climexp.10 . . . . 5 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)↑𝑁))
5950, 57, 58chvar 2250 . . . 4 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗)↑𝑁))
6035, 37, 593eqtr4rd 2655 . . 3 ((𝜑𝑗𝑍) → (𝐻𝑗) = (((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹)‘𝑗))
611, 20, 28, 2, 60climeq 14146 . 2 (𝜑 → (𝐻 ⇝ (𝐴𝑁) ↔ ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ⇝ (𝐴𝑁)))
6219, 61mpbird 246 1 (𝜑𝐻 ⇝ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  Vcvv 3173   class class class wbr 4583  cmpt 4643  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cn0 11169  cz 11254  cuz 11563  cexp 12722  cli 14063  TopOpenctopn 15905  fldccnfld 19567   Cn ccn 20838  cnccncf 22487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489
This theorem is referenced by:  stirlinglem8  38974
  Copyright terms: Public domain W3C validator