Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmptdf | Structured version Visualization version GIF version |
Description: A version of fmptd 6292 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
fmptdf.1 | ⊢ Ⅎ𝑥𝜑 |
fmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
fmptdf.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fmptdf | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | fmptdf.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | 2 | ex 449 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
4 | 1, 3 | ralrimi 2940 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
5 | fmptdf.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | fmpt 6289 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
7 | 4, 6 | sylib 207 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 ∀wral 2896 ↦ cmpt 4643 ⟶wf 5800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 |
This theorem is referenced by: gsumesum 29448 voliune 29619 sdclem2 32708 cncfiooicclem1 38779 dvnprodlem1 38836 stoweidlem35 38928 stoweidlem42 38935 stoweidlem48 38941 stirlinglem8 38974 sge0z 39268 sge0revalmpt 39271 sge0f1o 39275 sge0gerpmpt 39295 sge0ssrempt 39298 sge0ltfirpmpt 39301 sge0lempt 39303 sge0splitmpt 39304 sge0ss 39305 sge0rernmpt 39315 sge0lefimpt 39316 sge0clmpt 39318 sge0ltfirpmpt2 39319 sge0isummpt 39323 sge0xadd 39328 sge0fsummptf 39329 sge0snmptf 39330 sge0ge0mpt 39331 sge0repnfmpt 39332 sge0pnffigtmpt 39333 sge0gtfsumgt 39336 sge0pnfmpt 39338 meadjiun 39359 meaiunlelem 39361 omeiunle 39407 omeiunlempt 39410 opnvonmbllem1 39522 hoimbl2 39555 vonhoire 39563 vonn0ioo2 39581 vonn0icc2 39583 pimgtmnf 39609 issmfdmpt 39635 smfconst 39636 smfadd 39651 gsumsplit2f 41936 fsuppmptdmf 41956 |
Copyright terms: Public domain | W3C validator |