Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnf Structured version   Visualization version   GIF version

Theorem pimgtmnf 39609
Description: Given a real valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtmnf.1 𝑥𝜑
pimgtmnf.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimgtmnf (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem pimgtmnf
StepHypRef Expression
1 pimgtmnf.1 . . 3 𝑥𝜑
2 eqidd 2611 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
3 pimgtmnf.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
42, 3fvmpt2d 6202 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
54eqcomd 2616 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = ((𝑥𝐴𝐵)‘𝑥))
65breq2d 4595 . . 3 ((𝜑𝑥𝐴) → (-∞ < 𝐵 ↔ -∞ < ((𝑥𝐴𝐵)‘𝑥)))
71, 6rabbida 38302 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = {𝑥𝐴 ∣ -∞ < ((𝑥𝐴𝐵)‘𝑥)})
8 nfmpt1 4675 . . 3 𝑥(𝑥𝐴𝐵)
9 eqid 2610 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
101, 3, 9fmptdf 6294 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
118, 10pimgtmnf2 39601 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < ((𝑥𝐴𝐵)‘𝑥)} = 𝐴)
127, 11eqtrd 2644 1 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  {crab 2900   class class class wbr 4583  cmpt 4643  cfv 5804  cr 9814  -∞cmnf 9951   < clt 9953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958
This theorem is referenced by:  smfpimgtxr  39666
  Copyright terms: Public domain W3C validator