Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabbida | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabbida.1 | ⊢ Ⅎ𝑥𝜑 |
rabbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rabbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | ex 449 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) |
4 | 1, 3 | ralrimi 2940 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒)) |
5 | rabbi 3097 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | |
6 | 4, 5 | sylib 207 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 ∀wral 2896 {crab 2900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-ral 2901 df-rab 2905 |
This theorem is referenced by: pimgtmnf 39609 smfpimltmpt 39633 smfpimltxrmpt 39645 smfpimgtmpt 39667 smfpimgtxrmpt 39670 smfrec 39674 |
Copyright terms: Public domain | W3C validator |