Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rernmpt Structured version   Visualization version   GIF version

Theorem sge0rernmpt 39315
 Description: If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0rernmpt.xph 𝑥𝜑
sge0rernmpt.a (𝜑𝐴𝑉)
sge0rernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0rernmpt.re (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
Assertion
Ref Expression
sge0rernmpt ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sge0rernmpt
StepHypRef Expression
1 0xr 9965 . . 3 0 ∈ ℝ*
21a1i 11 . 2 ((𝜑𝑥𝐴) → 0 ∈ ℝ*)
3 pnfxr 9971 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 ((𝜑𝑥𝐴) → +∞ ∈ ℝ*)
5 iccssxr 12127 . . 3 (0[,]+∞) ⊆ ℝ*
6 sge0rernmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
75, 6sseldi 3566 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
8 iccgelb 12101 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
92, 4, 6, 8syl3anc 1318 . 2 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
10 simpr 476 . . . . . 6 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → ¬ 𝐵 < +∞)
11 nltpnft 11871 . . . . . . . 8 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
127, 11syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
1312adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
1410, 13mpbird 246 . . . . 5 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 = +∞)
1514eqcomd 2616 . . . 4 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → +∞ = 𝐵)
16 simpr 476 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
17 eqid 2610 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1817elrnmpt1 5295 . . . . . 6 ((𝑥𝐴𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1916, 6, 18syl2anc 691 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2019adantr 480 . . . 4 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2115, 20eqeltrd 2688 . . 3 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → +∞ ∈ ran (𝑥𝐴𝐵))
22 sge0rernmpt.a . . . . 5 (𝜑𝐴𝑉)
23 sge0rernmpt.xph . . . . . 6 𝑥𝜑
2423, 6, 17fmptdf 6294 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
25 sge0rernmpt.re . . . . 5 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
2622, 24, 25sge0rern 39281 . . . 4 (𝜑 → ¬ +∞ ∈ ran (𝑥𝐴𝐵))
2726ad2antrr 758 . . 3 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → ¬ +∞ ∈ ran (𝑥𝐴𝐵))
2821, 27condan 831 . 2 ((𝜑𝑥𝐴) → 𝐵 < +∞)
292, 4, 7, 9, 28elicod 12095 1 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977   class class class wbr 4583   ↦ cmpt 4643  ran crn 5039  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  [,)cico 12048  [,]cicc 12049  Σ^csumge0 39255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256 This theorem is referenced by:  sge0ltfirpmpt2  39319  sge0xadd  39328
 Copyright terms: Public domain W3C validator