Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirpmpt2 Structured version   Visualization version   GIF version

Theorem sge0ltfirpmpt2 39319
 Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirpmpt2.xph 𝑥𝜑
sge0ltfirpmpt2.a (𝜑𝐴𝑉)
sge0ltfirpmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0ltfirpmpt2.rp (𝜑𝑌 ∈ ℝ+)
sge0ltfirpmpt2.re (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirpmpt2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem sge0ltfirpmpt2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sge0ltfirpmpt2.a . . 3 (𝜑𝐴𝑉)
2 sge0ltfirpmpt2.xph . . . 4 𝑥𝜑
3 sge0ltfirpmpt2.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2610 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6294 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0ltfirpmpt2.rp . . 3 (𝜑𝑌 ∈ ℝ+)
7 sge0ltfirpmpt2.re . . 3 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
81, 5, 6, 7sge0ltfirp 39293 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
9 simpr 476 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
10 elpwinss 38241 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110resmptd 5371 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴𝐵) ↾ 𝑦) = (𝑥𝑦𝐵))
1211fveq2d 6107 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
1312adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
14 elinel2 3762 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1514adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
16 nfv 1830 . . . . . . . . . . 11 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1816 . . . . . . . . . 10 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 786 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
1910sselda 3568 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2019adantll 746 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
212, 1, 3, 7sge0rernmpt 39315 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
2218, 20, 21syl2anc 691 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
23 eqid 2610 . . . . . . . . . 10 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
2417, 22, 23fmptdf 6294 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,)+∞))
2515, 24sge0fsum 39280 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘))
26 simpr 476 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑦)
27 simpll 786 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
2810sselda 3568 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
2928adantll 746 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
30 nfv 1830 . . . . . . . . . . . . . . 15 𝑥 𝑘𝐴
312, 30nfan 1816 . . . . . . . . . . . . . 14 𝑥(𝜑𝑘𝐴)
32 nfcsb1v 3515 . . . . . . . . . . . . . . 15 𝑥𝑘 / 𝑥𝐵
3332nfel1 2765 . . . . . . . . . . . . . 14 𝑥𝑘 / 𝑥𝐵 ∈ (0[,)+∞)
3431, 33nfim 1813 . . . . . . . . . . . . 13 𝑥((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
35 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
3635anbi2d 736 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((𝜑𝑥𝐴) ↔ (𝜑𝑘𝐴)))
37 csbeq1a 3508 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
3837eleq1d 2672 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝐵 ∈ (0[,)+∞) ↔ 𝑘 / 𝑥𝐵 ∈ (0[,)+∞)))
3936, 38imbi12d 333 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))))
4034, 39, 21chvar 2250 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
4127, 29, 40syl2anc 691 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
42 nfcv 2751 . . . . . . . . . . . . 13 𝑘𝐵
4342, 32, 37cbvmpt 4677 . . . . . . . . . . . 12 (𝑥𝑦𝐵) = (𝑘𝑦𝑘 / 𝑥𝐵)
4443fvmpt2 6200 . . . . . . . . . . 11 ((𝑘𝑦𝑘 / 𝑥𝐵 ∈ (0[,)+∞)) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4526, 41, 44syl2anc 691 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4645sumeq2dv 14281 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑘𝑦 𝑘 / 𝑥𝐵)
47 eqcom 2617 . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝑘 = 𝑥)
4847imbi1i 338 . . . . . . . . . . . . 13 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵))
49 eqcom 2617 . . . . . . . . . . . . . 14 (𝐵 = 𝑘 / 𝑥𝐵𝑘 / 𝑥𝐵 = 𝐵)
5049imbi2i 325 . . . . . . . . . . . . 13 ((𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5148, 50bitri 263 . . . . . . . . . . . 12 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5237, 51mpbi 219 . . . . . . . . . . 11 (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵)
53 nfcv 2751 . . . . . . . . . . 11 𝑥𝑦
54 nfcv 2751 . . . . . . . . . . 11 𝑘𝑦
5552, 53, 54, 32, 42cbvsum 14273 . . . . . . . . . 10 Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵
5655a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵)
5746, 56eqtrd 2644 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑥𝑦 𝐵)
5813, 25, 573eqtrd 2648 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = Σ𝑥𝑦 𝐵)
5958oveq1d 6564 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
6059adantr 480 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
619, 60breqtrd 4609 . . . 4 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
6261ex 449 . . 3 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
6362reximdva 3000 . 2 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
648, 63mpd 15 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  ∃wrex 2897  ⦋csb 3499   ∩ cin 3539  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℝcr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950   < clt 9953  ℝ+crp 11708  [,)cico 12048  [,]cicc 12049  Σcsu 14264  Σ^csumge0 39255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256 This theorem is referenced by:  sge0xaddlem2  39327  sge0gtfsumgt  39336
 Copyright terms: Public domain W3C validator