Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpt3d Structured version   Visualization version   GIF version

Theorem fmpt3d 6293
 Description: Domain and co-domain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
fmpt3d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fmpt3d.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fmpt3d (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmpt3d
StepHypRef Expression
1 fmpt3d.2 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
2 eqid 2610 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
31, 2fmptd 6292 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
4 fmpt3d.1 . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
54feq1d 5943 . 2 (𝜑 → (𝐹:𝐴𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶))
63, 5mpbird 246 1 (𝜑𝐹:𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ↦ cmpt 4643  ⟶wf 5800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812 This theorem is referenced by:  fmptco  6303  nmof  22333  ofoprabco  28847  sgnsf  29060  qqhf  29358  indf  29405  esumcocn  29469  ofcf  29492  mbfmcst  29648  dstrvprob  29860  dstfrvclim1  29866  signstf  29969  fsovfd  37326  dssmapnvod  37334  binomcxplemnotnn0  37577  sge0seq  39339  hoicvrrex  39446
 Copyright terms: Public domain W3C validator