MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptdf Structured version   Unicode version

Theorem fmptdf 6032
Description: A version of fmptd 6031 using bound-variable hypothesis instead of a distinct variable condition for  ph. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1  |-  F/ x ph
fmptdf.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
fmptdf.3  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fmptdf  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)    F( x)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3  |-  F/ x ph
2 fmptdf.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
32ex 432 . . 3  |-  ( ph  ->  ( x  e.  A  ->  B  e.  C ) )
41, 3ralrimi 2854 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
5 fmptdf.3 . . 3  |-  F  =  ( x  e.  A  |->  B )
65fmpt 6028 . 2  |-  ( A. x  e.  A  B  e.  C  <->  F : A --> C )
74, 6sylib 196 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398   F/wnf 1621    e. wcel 1823   A.wral 2804    |-> cmpt 4497   -->wf 5566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fv 5578
This theorem is referenced by:  gsumesum  28288  voliune  28438  sdclem2  30475  cncfiooicclem1  31935  dvnprodlem1  31982  stoweidlem35  32056  stoweidlem42  32063  stoweidlem48  32069  stirlinglem8  32102  gsumsplit2f  33208  fsuppmptdmf  33228
  Copyright terms: Public domain W3C validator