Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem42 Structured version   Visualization version   GIF version

Theorem stoweidlem42 38935
Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here 𝑋 is used to represent 𝑥 in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem42.1 𝑖𝜑
stoweidlem42.2 𝑡𝜑
stoweidlem42.3 𝑡𝑌
stoweidlem42.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem42.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem42.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem42.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem42.8 (𝜑𝑀 ∈ ℕ)
stoweidlem42.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem42.10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem42.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem42.12 (𝜑𝐸 < (1 / 3))
stoweidlem42.13 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
stoweidlem42.14 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
stoweidlem42.15 (𝜑𝑇 ∈ V)
stoweidlem42.16 (𝜑𝐵𝑇)
Assertion
Ref Expression
stoweidlem42 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Distinct variable groups:   𝑡,𝑖   𝐵,𝑖   𝑖,𝑀   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝐸   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝐵(𝑡,𝑓,𝑔)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐸(𝑡,𝑓,𝑔)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem42
Dummy variables 𝑎 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem42.2 . 2 𝑡𝜑
2 1red 9934 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3 stoweidlem42.11 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
43rpred 11748 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
52, 4resubcld 10337 . . . . . . 7 (𝜑 → (1 − 𝐸) ∈ ℝ)
65adantr 480 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ∈ ℝ)
7 stoweidlem42.8 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
84, 7nndivred 10946 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ∈ ℝ)
92, 8resubcld 10337 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ)
117nnnn0d 11228 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1211adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ0)
1310, 12reexpcld 12887 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) ∈ ℝ)
14 elnnuz 11600 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
157, 14sylib 207 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
1615adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ (ℤ‘1))
17 stoweidlem42.1 . . . . . . . . . . 11 𝑖𝜑
18 nfv 1830 . . . . . . . . . . 11 𝑖 𝑡𝐵
1917, 18nfan 1816 . . . . . . . . . 10 𝑖(𝜑𝑡𝐵)
20 nfv 1830 . . . . . . . . . 10 𝑖 𝑎 ∈ (1...𝑀)
2119, 20nfan 1816 . . . . . . . . 9 𝑖((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))
22 stoweidlem42.6 . . . . . . . . . . . . 13 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
23 nfcv 2751 . . . . . . . . . . . . . 14 𝑖𝑇
24 nfmpt1 4675 . . . . . . . . . . . . . 14 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
2523, 24nfmpt 4674 . . . . . . . . . . . . 13 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
2622, 25nfcxfr 2749 . . . . . . . . . . . 12 𝑖𝐹
27 nfcv 2751 . . . . . . . . . . . 12 𝑖𝑡
2826, 27nffv 6110 . . . . . . . . . . 11 𝑖(𝐹𝑡)
29 nfcv 2751 . . . . . . . . . . 11 𝑖𝑎
3028, 29nffv 6110 . . . . . . . . . 10 𝑖((𝐹𝑡)‘𝑎)
3130nfel1 2765 . . . . . . . . 9 𝑖((𝐹𝑡)‘𝑎) ∈ ℝ
3221, 31nfim 1813 . . . . . . . 8 𝑖(((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
33 eleq1 2676 . . . . . . . . . 10 (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑀) ↔ 𝑎 ∈ (1...𝑀)))
3433anbi2d 736 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))))
35 fveq2 6103 . . . . . . . . . 10 (𝑖 = 𝑎 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑎))
3635eleq1d 2672 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑎) ∈ ℝ))
3734, 36imbi12d 333 . . . . . . . 8 (𝑖 = 𝑎 → ((((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)))
38 stoweidlem42.16 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
3938sselda 3568 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑡𝑇)
40 ovex 6577 . . . . . . . . . . . 12 (1...𝑀) ∈ V
41 mptexg 6389 . . . . . . . . . . . 12 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4240, 41mp1i 13 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4322fvmpt2 6200 . . . . . . . . . . 11 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
4439, 42, 43syl2anc 691 . . . . . . . . . 10 ((𝜑𝑡𝐵) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
45 stoweidlem42.9 . . . . . . . . . . . . . 14 (𝜑𝑈:(1...𝑀)⟶𝑌)
4645fnvinran 38196 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
47 simpl 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 553 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
49 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
5049anbi2d 736 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
51 feq1 5939 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 333 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
53 stoweidlem42.13 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
5452, 53vtoclg 3239 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
5546, 48, 54sylc 63 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5655adantlr 747 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5739adantr 480 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5856, 57ffvelrnd 6268 . . . . . . . . . 10 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
5944, 58fvmpt2d 6202 . . . . . . . . 9 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
6059, 58eqeltrd 2688 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
6132, 37, 60chvar 2250 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
62 remulcl 9900 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ)
6362adantl 481 . . . . . . 7 (((𝜑𝑡𝐵) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
6416, 61, 63seqcl 12683 . . . . . 6 ((𝜑𝑡𝐵) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
653rpcnd 11750 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
667nncnd 10913 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
677nnne0d 10942 . . . . . . . . . . . 12 (𝜑𝑀 ≠ 0)
6865, 66, 67divcan1d 10681 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) · 𝑀) = 𝐸)
6968eqcomd 2616 . . . . . . . . . 10 (𝜑𝐸 = ((𝐸 / 𝑀) · 𝑀))
7069oveq2d 6565 . . . . . . . . 9 (𝜑 → (1 − 𝐸) = (1 − ((𝐸 / 𝑀) · 𝑀)))
71 1cnd 9935 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
7265, 66, 67divcld 10680 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ∈ ℂ)
7372, 66mulcld 9939 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑀) · 𝑀) ∈ ℂ)
7471, 73negsubd 10277 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 − ((𝐸 / 𝑀) · 𝑀)))
7572, 66mulneg1d 10362 . . . . . . . . . . 11 (𝜑 → (-(𝐸 / 𝑀) · 𝑀) = -((𝐸 / 𝑀) · 𝑀))
7675eqcomd 2616 . . . . . . . . . 10 (𝜑 → -((𝐸 / 𝑀) · 𝑀) = (-(𝐸 / 𝑀) · 𝑀))
7776oveq2d 6565 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
7870, 74, 773eqtr2d 2650 . . . . . . . 8 (𝜑 → (1 − 𝐸) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
798renegcld 10336 . . . . . . . . . 10 (𝜑 → -(𝐸 / 𝑀) ∈ ℝ)
807nnred 10912 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
81 3re 10971 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
83 3ne0 10992 . . . . . . . . . . . . . . . . . 18 3 ≠ 0
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
8582, 84rereccld 10731 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) ∈ ℝ)
86 stoweidlem42.12 . . . . . . . . . . . . . . . 16 (𝜑𝐸 < (1 / 3))
87 1lt3 11073 . . . . . . . . . . . . . . . . . . 19 1 < 3
8887a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 3)
89 0lt1 10429 . . . . . . . . . . . . . . . . . . . 20 0 < 1
9089a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 1)
91 3pos 10991 . . . . . . . . . . . . . . . . . . . 20 0 < 3
9291a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
93 ltdiv2 10788 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (1 < 3 ↔ (1 / 3) < (1 / 1)))
942, 90, 82, 92, 2, 90, 93syl222anc 1334 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 < 3 ↔ (1 / 3) < (1 / 1)))
9588, 94mpbid 221 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 / 3) < (1 / 1))
96 1div1e1 10596 . . . . . . . . . . . . . . . . 17 (1 / 1) = 1
9795, 96syl6breq 4624 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) < 1)
984, 85, 2, 86, 97lttrd 10077 . . . . . . . . . . . . . . 15 (𝜑𝐸 < 1)
997nnge1d 10940 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑀)
1004, 2, 80, 98, 99ltletrd 10076 . . . . . . . . . . . . . 14 (𝜑𝐸 < 𝑀)
1014, 80, 100ltled 10064 . . . . . . . . . . . . 13 (𝜑𝐸𝑀)
1023rpregt0d 11754 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
1037nngt0d 10941 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑀)
104 lediv2 10792 . . . . . . . . . . . . . 14 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
105102, 80, 103, 102, 104syl121anc 1323 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
106101, 105mpbid 221 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 𝐸))
1073rpcnne0d 11757 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
108 divid 10593 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) → (𝐸 / 𝐸) = 1)
109107, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝐸) = 1)
110106, 109breqtrd 4609 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ≤ 1)
1118, 2lenegd 10485 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) ≤ 1 ↔ -1 ≤ -(𝐸 / 𝑀)))
112110, 111mpbid 221 . . . . . . . . . 10 (𝜑 → -1 ≤ -(𝐸 / 𝑀))
113 bernneq 12852 . . . . . . . . . 10 ((-(𝐸 / 𝑀) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ -1 ≤ -(𝐸 / 𝑀)) → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11479, 11, 112, 113syl3anc 1318 . . . . . . . . 9 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11571, 72negsubd 10277 . . . . . . . . . 10 (𝜑 → (1 + -(𝐸 / 𝑀)) = (1 − (𝐸 / 𝑀)))
116115oveq1d 6564 . . . . . . . . 9 (𝜑 → ((1 + -(𝐸 / 𝑀))↑𝑀) = ((1 − (𝐸 / 𝑀))↑𝑀))
117114, 116breqtrd 4609 . . . . . . . 8 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
11878, 117eqbrtrd 4605 . . . . . . 7 (𝜑 → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
119118adantr 480 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
120 eqid 2610 . . . . . . 7 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
1217adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ)
122 eqid 2610 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
12319, 58, 122fmptdf 6294 . . . . . . . 8 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
12444feq1d 5943 . . . . . . . 8 ((𝜑𝑡𝐵) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
125123, 124mpbird 246 . . . . . . 7 ((𝜑𝑡𝐵) → (𝐹𝑡):(1...𝑀)⟶ℝ)
126 stoweidlem42.10 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
127126r19.21bi 2916 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝐵) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
128127an32s 842 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
129128, 59breqtrrd 4611 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝐹𝑡)‘𝑖))
13072addid2d 10116 . . . . . . . . . . 11 (𝜑 → (0 + (𝐸 / 𝑀)) = (𝐸 / 𝑀))
131 lediv2 10792 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
1322, 90, 80, 103, 102, 131syl221anc 1329 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
13399, 132mpbid 221 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
13465div1d 10672 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 1) = 𝐸)
135133, 134breqtrd 4609 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
1368, 4, 2, 135, 98lelttrd 10074 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) < 1)
137130, 136eqbrtrd 4605 . . . . . . . . . 10 (𝜑 → (0 + (𝐸 / 𝑀)) < 1)
138 0red 9920 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
139138, 8, 2ltaddsubd 10506 . . . . . . . . . 10 (𝜑 → ((0 + (𝐸 / 𝑀)) < 1 ↔ 0 < (1 − (𝐸 / 𝑀))))
140137, 139mpbid 221 . . . . . . . . 9 (𝜑 → 0 < (1 − (𝐸 / 𝑀)))
1419, 140elrpd 11745 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
142141adantr 480 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
14328, 19, 120, 121, 125, 129, 142stoweidlem3 38896 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) < (seq1( · , (𝐹𝑡))‘𝑀))
1446, 13, 64, 119, 143lelttrd 10074 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < (seq1( · , (𝐹𝑡))‘𝑀))
145 stoweidlem42.7 . . . . . . 7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
146145fvmpt2 6200 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
14739, 64, 146syl2anc 691 . . . . 5 ((𝜑𝑡𝐵) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
148144, 147breqtrrd 4611 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑍𝑡))
149 simpl 472 . . . . 5 ((𝜑𝑡𝐵) → 𝜑)
150 stoweidlem42.3 . . . . . 6 𝑡𝑌
151 stoweidlem42.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
152 stoweidlem42.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
153 stoweidlem42.15 . . . . . 6 (𝜑𝑇 ∈ V)
154 stoweidlem42.14 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
15517, 150, 151, 152, 22, 145, 153, 7, 45, 53, 154fmuldfeq 38650 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
156149, 39, 155syl2anc 691 . . . 4 ((𝜑𝑡𝐵) → (𝑋𝑡) = (𝑍𝑡))
157148, 156breqtrrd 4611 . . 3 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑋𝑡))
158157ex 449 . 2 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝑋𝑡)))
1591, 158ralrimi 2940 1 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  wne 2780  wral 2896  Vcvv 3173  wss 3540   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  3c3 10948  0cn0 11169  cuz 11563  +crp 11708  ...cfz 12197  seqcseq 12663  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723
This theorem is referenced by:  stoweidlem51  38944
  Copyright terms: Public domain W3C validator